首页 | 本学科首页   官方微博 | 高级检索  
     


Root mean square optimization criterion for vibration behaviour of linear quarter car using analytical methods
Abstract:In this paper, a linear two-degree-of-freedom quarter car model is used to derive a number of analytical formulae describing the dynamic behaviour of passively suspended vehicles running on a harmonically bumped road. The linearity of the system allows us to analytically investigate the steady-state response characteristics. We derive analytical expressions for the root mean square (RMS) of the sprung mass absolute acceleration and relative displacement. This paper demonstrates the shortcomings of existing classical optimization methods. Hence we introduce a new optimization method based on minimizing the absolute acceleration RMS with respect to the relative displacement RMS. The RMS optimization method is applied for the symbolic derivation of analytical formulae featuring the best compromise among conflicting performance indices pertaining to the vehicle suspension system, i.e., sprung mass acceleration and working space. The proposed optimization technique is utilized to find the optimal damping and stiffness curves for the main suspension. The RMS optimal values are used to create design charts for suspension parameters, which are very useful particularly in the presence of physical constraints such as a limit on relative displacement. We introduce a numerical example to illustrate the optimality of the obtained solutions.
Keywords:Quarter car  Vibration isolation  Linear system optimization  Frequency optimization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号