首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two degrees of freedom PID multi-controllers to design a mathematical driver model: experimental validation and robustness tests
Abstract:This paper proposes a mathematical driver model based on PID multi-controllers having two degrees of freedom. Each PID controller making up this model is synthesised by the Ziegler–Nichols oscillation method, using the linear time invariant models which are obtained around their nominal operating points. Different PID controllers are combined using nonlinear optimisation and the H constraint. To demonstrate its robustness, it was tested on two models: a linear parameter variant model and a nonlinear four-wheel model. It was also tested in situations of high dynamic demand. The driver model showed good performance, stability and trajectory tracking. The performance tests were carried out using experimental data acquired by a Laboratory Peugeot 307 developed by INRETS-MA. This driver model was developed for an application known as ‘Itinerary Rupture DIagnosis’ (DIARI), which aims to evaluate the physical limits of a vehicle negotiating a bend. DIARI requires a tool to determine the steering commands to be applied to a vehicle model, making extrapolations with respect to speed.
Keywords:vehicle dynamics and experimental validation  mathematical driver model  PID multi-controllers  switching control
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号