首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New model and simulation of Macpherson suspension system for ride control applications
Abstract:The main purpose of this paper is to propose a new nonlinear model of the Macpherson strut suspension system for ride control applications. The model includes the vertical acceleration of the sprung mass and incorporates the suspension linkage kinematics. This two-degree-of-freedom (DOF) model not only provides a more accurate representation of the Macpherson suspension system for control applications in order to improve the ride quality, but also facilitates evaluation of the suspension kinematic parameters, such as camber, caster and king-pin angles as well as track alterations on the ride vibrations. The performances of the nonlinear and linearised models are investigated and compared with those of the conventional model. Besides, it is shown that the semi-active force improves the ride quality better than active force, while the opposite is true in terms of improving the performance of the kinematic parameters. The results of variations of the kinematic parameters based on the linear model subject to road disturbances are compared with those of a virtual prototype of Macpherson suspension in ADAMS software. The analytical results in both cases are shown to agree with each other.
Keywords:Macpherson suspension  ride quality  camber angle  king-pin angle  caster angle  track
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号