首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fault detection of vehicle suspension system using wavelet analysis
Abstract:This paper presents a method based on continuous wavelet transform to detect the faults of vehicle suspension systems. The Morlet wavelet functions are employed to approach the natural frequencies of the system and the frequency components of the signal with relative maximum energy. To evaluate our method, we use a full vehicle dynamic model which has been simulated in ADAMS/CAR and validated by laboratory test results. The suspension faults have been considered due to the damage of shock absorbers (dampers) and upper damper bushings (UDBs) and assumed as the decrease in damping force and loose joints, respectively. In this paper, the incapability of the spectral analysis by using fast Fourier transform in analysis of the signals is revealed through applying the inputs that include transient characteristics and then wavelet transform employed to achieve more proper results. A swept frequency is applied as an input to the wheels that simulates the road irregularities. After detection of faulty sections of the system using signal energy distribution, the defects of damper and UDBs are distinguished from each other through observing the changes of natural frequencies and corresponding energy amplitudes.
Keywords:continuous wavelet transform  Morlet wavelet  suspension system  fault detection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号