Abstract: | The paper addresses the need for improved mathematical models of human steering control. A multiple-model structure for a driver's internal model of a nonlinear vehicle is proposed. The multiple-model structure potentially offers a straightforward way to represent a range of driver expertise. The internal model is combined with a model predictive steering controller. The controller generates a steering command through the minimisation of a cost function involving vehicle path error. A study of the controller performance during an aggressive, nonlinear steering manoeuvre is provided. Analysis of the controller performance reveals a reduction in the closed-loop controller bandwidth with increasing tyre saturation and fixed controller gains. A parameter study demonstrates that increasing the multiple-model density, increasing the weights on the path error, and increasing the controller knowledge range all improved the path following accuracy of the controller. |