首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rail vehicle wheel wear prediction: a comparison between analytical and experimental approaches
Abstract:There are a number of theoretical and practical techniques to compute rail vehicle wheel wear. For instance, the Archard equation is a well-known tool to determine the worn volume in sliding contact, as a function of normal load, sliding distance and the surface hardness. Of course, the wear coefficient (called K) used in this equation to differentiate the wear models implicitly comprises the conditions that govern the contact surface. Two situations can be taken into account when considering a sliding contact in a rail vehicle wheels, particularly along a curved track: (i) when the radial force prevails the lateral tangential force, which is mainly the frictional force but before flanging and (ii) during flange contact. Also, the Archard equation is employed within the tread and flange regions separately, both the regions being of interest in this paper. A number of approaches are then used to find the distance slid. The authors compare the field test results and the outcome of the analytical approaches. When the wheel wear results acquired from the two test bogies on Iranian Railways, all technical (rigid frame bogies with new assemblies and components) and operational items were identical, except for changing the bogie orientation in the second test trial for a short period. Good agreement was found between the analytical and practical investigations.
Keywords:wheel wear  the Archard equation  the energy dissipation effect
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号