首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The concept design and dynamics analysis of a novel vehicle suspension mechanism with invariable orientation parameters
Abstract:This paper starts with a classical mechanism synthesis problem and focuses on the concept design and dynamics analysis of an independent suspension that has invariable orientation parameters when the wheel moves up (jounces) and down (rebounds). The paper first proposes a symmetric redundant constraint suspension structure that has invariable orientation parameters. And then, it analyses the mechanism mobility with the reciprocal screw theory, after which it establishes the displacement constraint equations of the suspension. This type of suspension has all the advantages of the sliding pillar suspension but overcomes its disadvantage of over-wearing. Through differentiating the constraint equations with respect to time, it obtains the kinematics relationship and builds up the dynamics equations of the suspension via Newton–Euler method. Numerical simulations indicate that this kind of independent suspensions should not only eliminate the shambling shocks induced by the jumping of wheels but also decrease the abrasion of the wheels. Therefore, this kind of independent suspensions can obviously improve the ride and handling properties of advanced automobiles.
Keywords:vehicle suspension  invariable orientation parameter  concept design  dynamics analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号