首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗糙集聚类算法的铁路通道客运市场细分
引用本文:李海军,李引珍,周鹏,朱昌锋,马昌喜. 基于粗糙集聚类算法的铁路通道客运市场细分[J]. 交通运输系统工程与信息, 2018, 18(3): 9-14
作者姓名:李海军  李引珍  周鹏  朱昌锋  马昌喜
作者单位:兰州交通大学 交通运输学院,兰州 730070
基金项目:教育部人文社会科学研究规划基金/Research Planning Funds of Humanities and Social Sciences for the Ministry of Education(14YJA790023,15XJAZH002);甘肃省科技计划资助/ Science and Technology Planning Funds for Gansu Province (17JR5RA10).
摘    要:对铁路通道内客运市场的细分,是研究铁路通道客流分担、客运产品设计的基础. 根据宝鸡-兰州铁路通道旅客出行方式选择调查数据,结合粗糙集理论,首先,构建了铁路通道旅客出行方式选择决策表,对条件属性进行属性约简,并计算各属性的权重;其次,考虑到避免传统聚类算法的“维数陷阱”,提出了基于粗糙属性重要度的K-means聚类算法,并在UCI数据集上进行仿真实验;最后,运用该算法对调查数据样本进行聚类.结果表明:将铁路通道客运市场细分为6类时,具有最好的聚类效果;经统计分析发现,不同子市场的旅客出行行为有明显的偏好.

关 键 词:铁路运输  客运市场  市场细分  聚类分析  粗糙集  
收稿时间:2018-01-08

The Subdivision of Railway Passenger Transport Market Based on Rough Clustering Algorithm
LI Hai-jun,LI Yin-Zhen,ZHOU Peng,ZHU Chang-feng,MA Chang-xi. The Subdivision of Railway Passenger Transport Market Based on Rough Clustering Algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 9-14
Authors:LI Hai-jun  LI Yin-Zhen  ZHOU Peng  ZHU Chang-feng  MA Chang-xi
Affiliation:School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
Abstract:The subdivision of railway passenger transport market is the basis for the study of passenger flow share rate in the railway corridor and the design of railway passenger transport products. According to the survey data on passengers travel mode choice in Baoji- Lanzhou corridor, combined with rough set theory, firstly, this paper builds the railway passenger travel mode choice decision table, makes attribute reduction on condition attributes, and calculates the weight of each attribute. Secondly, to avoid the "dimension trap" caused by the traditional clustering algorithm, it proposes the K-means clustering algorithm based on rough attribute significance, and makes simulation experiments on UCI data sets. Finally, using the clustering algorithm conducts the cluster on the sample of survey data. The results show that when the railway passenger transport market is divided into 6 classes, the clustering effect is the best, and the statistical analysis shows that the passenger travel behavior of different sub markets has obvious preference.
Keywords:railway transportation  passenger transport market  market segmentation  cluster analysis  rough set  
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号