首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental and stowing/deploying dynamical simulation of lenticular carbon fiber reinforced polymer thin-walled tubular space boom
Authors:Rui-xiong Li  Wu-jun Chen  Gong-yi Fu
Institution:Space Structures Research Center, Shanghai Jiaotong University, Shanghai 200030, China
Abstract:The stowing and deploying experiment was conducted for three 700 mm long thin-walled tubes, and the structural behavior characteristics parameters were measured clearly, including strain, deformation and wrapping moment. 3D finite element models (FEM) were built subsequently and explicit dynamic method was used to simulate the stowing and deploying of the lenticular carbon fiber reinforced polymer (CFRP) thin-walled tubular space boom, which was designed as four-ply (45°/ − 45°/45°/ − 45°) lay-up. The stress and energy during the wrapping process were got and compared with different wrapping angular velocity, the reasonable wrapping angular velocity and effective method were conformed, and structural behavior characteristics were obtained. The results were compared and discussed as well, and the results show that the numerical results by 0.628 rad/s velocity agree well with the measured values. In this paper, the numerical procedure and experimental results are valuable to the optimization design of CFRP thin-walled tubular space boom and future research.
Keywords:lenticular carbon fiber reinforced polymer thin-walled tube  space boom  explicit method  stowing and deploying  wrapping moment
本文献已被 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号