首页 | 本学科首页   官方微博 | 高级检索  
     

基于LS-SVM的天然气管网负荷组合预测
引用本文:代小华,白建辉,杨玲,唐小江. 基于LS-SVM的天然气管网负荷组合预测[J]. 管道技术与设备, 2010, 0(3): 14-16,33
作者姓名:代小华  白建辉  杨玲  唐小江
作者单位:1. 中国石油天然气管道工程有限公司工艺室,河北廊坊,065000
2. 中国石油勘探开发研究院,北京,100000
3. 中冶成工建设有限公司新疆分公司,新疆乌鲁木齐,830000
4. 中国石油管道局物质装备公司,河北廊坊,065000
摘    要:针对现有组合预测模型,基于经验风险最小化原则,克服预测精度受组合模型限制的缺点,提出一种基于最小二乘支持向量机(LS-SVM)的天然气管网负荷组合预测模型,并与AR模型、BP神经网络模型、GM(1,1)模型以及最优权重组合模型进行了比较,得出基于最小二乘支持向量机的天然气管网负荷组合预测模型能够得到更高的预测精确度,可为天然气管网的安全运行以及优化调度提供决策支持的结论。

关 键 词:天然气  管网  负荷  组合预测  最小二乘支持向量机

Combination Method of Natural Gas Pipeline Network Load Forecasting Based on Least Squares Support Vector Machines
DAI Xiao-hua,BAI Jian-hui,YANG Ling,TANG Xiao-jiang. Combination Method of Natural Gas Pipeline Network Load Forecasting Based on Least Squares Support Vector Machines[J]. Pipeline Technique and Equipment, 2010, 0(3): 14-16,33
Authors:DAI Xiao-hua  BAI Jian-hui  YANG Ling  TANG Xiao-jiang
Affiliation:1.China Petroleum Pipeline Engineering Corporation,Langfang 065000,China;2.Research Institute of Petroleum Exploration &Development,Beijing 100000,China;3.MCC Chenggong Construction Co.Ltd.,Urumchi 830000,China;4.China Petroleum Pipeline Material & Equipment Corporation,Langfang 065000,China)
Abstract:In light of the existing combined prediction model based on the experience of risk minimization and of the forecast accuracy of the model by the combination of restrictions,a natural gas pipe network load forecasting model based on the least squares support vector machines(LS-SVM)is proposed and compared with the AR model,BP neural network model,GM(1,1)model as well as the top priority recombination model.Least squares support vector machines based on the natural gas pipeline network load forecasting model portfolio will provide a higher forecast accuracy for the safe operation of the pipeline network optimization as well as credible support for the theory.
Keywords:natural gas  pipeline network  load  forecast  LS-SVM
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号