首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高强钢丝编织格栅网面内拉伸性能的数值分析
引用本文:汪敏,陈鹏,刘盈丰,冯刚,江燕.高强钢丝编织格栅网面内拉伸性能的数值分析[J].西南交通大学学报,2023,58(2):446-452.
作者姓名:汪敏  陈鹏  刘盈丰  冯刚  江燕
作者单位:1.陆军勤务学院军事设施系,重庆4013112.南京理工大学机械工程学院,江苏 南京2100143.重庆对外建设(集团)有限公司,重庆401121
基金项目:国防基础加强计划领域基金(2019-JCJQ-JJ-023);重庆市自然科学基金(cstc2019jcyj-msxmX0598)
摘    要:采用高强钢丝编织的格栅网在边坡浅层地质灾害和军事工程防护领域均有着广泛的应用.由于影响格栅网面内力学性能的参数较多,精细化的数值分析可为优化格栅网的制备工艺充分发挥其力学性能提供依据.为此,基于ANSYS Mechanical模块,在格栅网力学性能理论研究基础上,考虑钢丝材料的非线性应力强化效应、格栅网几何构造形成的各向异性以及连接节点处编织工艺造成的接触和状态非线性等因素,开展了格栅网面内拉伸力学性能的非线性数值分析.结果表明:数值计算与试验获得的格栅网应力应变变化趋势基本一致;与试验结果相比,数值计算获得的格栅网等效弹性模型(刚度)在Y方向误差为10.6%,X方向误差为18.5%;数值计算获得的格栅网极限应力应变在Y方向误差分别为10.0%和12.8%,在X方向误差分别为0.7%和18.3%.

关 键 词:高强钢丝  格栅网  等效弹性模量  非线性  数值分析
收稿时间:2021-05-09

Numerical Simulation of In-plane Tensile Properties of High-Strength Steel Wire Mesh
WANG Min,CHEN Peng,LIU Yingfeng,FENG Gang,JIANG Yan.Numerical Simulation of In-plane Tensile Properties of High-Strength Steel Wire Mesh[J].Journal of Southwest Jiaotong University,2023,58(2):446-452.
Authors:WANG Min  CHEN Peng  LIU Yingfeng  FENG Gang  JIANG Yan
Institution:1.Department of Military Facilities, Army Logistical Academy, Chongqing 401311, China2.School of Mechanical Engineering, NanJing University of Science & Technology, Nanjing 210014, China3.Chongqing International Construction (Group) Co., Ltd., Chongqing 401121, China
Abstract:The mesh woven with high-strength steel wires are widely used in fields of shallow geological disasters of slope and military engineering protection. As there are many weaving process parameters that affect the in-plane mechanical properties of the mesh, a refined numerical analysis can provide a basis for optimizing the mesh preparation process to give full play to its mechanical properties. Based on ANSYS Mechanical module and theoretical study of the mechanical properties of the mesh, a nonlinear numerical analysis of the mechanical properties of the wire mesh in plane tension was carried out taking into consideration the nonlinear stress strengthening effect of the steel wire material, the anisotropy formed by the geometric structure of the mesh, and the contact and state nonlinearity caused by the weaving process at the connection nodes of the mesh. Results show that the variation trend of stress and strain of the mesh obtained by numerical calculation is basically consistent with that obtained by experiment. Compared with the experimental results, the error of the equivalent elastic model (stiffness) of the mesh obtained by numerical calculation is 10.6% in the Y direction and is 18.5% in the X direction. The errors of ultimate stress and ultimate strain obtained by the numerical calculation are 10.0% and 12.8% in the Y direction and are 0.7% and 18.3% in the X direction, respectively. 
Keywords:
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号