首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Practical Frequency and Time Optimal Design of Passive Linear Vibration Isolation Mounts
Authors:G Nakhaie Jazar  A Narimani  M F Golnaraghi  D A Swanson
Abstract:Summary In this paper we examine a linear one-degree of freedom vibration isolator mount. The linearity of the system allows us to analyze its frequency and time response characteristics analytically. Optimal damping and stiffness values for the isolator are obtained by minimizing certain cost functions, which are the Root Mean Square (RMS) of the absolute acceleration and the relative displacement. These RMS cost functions are used to create a design chart for the isolator parameters. This is very useful particularly in the presence of physical constraints such as a limit in relative displacement. The time response of the system for a unit step input is also considered to gain an insight into the transient characteristics of the system. We obtain an optimal value for the damping ratio of the system in order to minimize the transmitted acceleration. Combining the frequency and time response analyses leads to an optimal value for the mount natural frequency and damping ratio satisfying both time and frequency domains. The results are verified numerically using measured acceleration as input.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号