首页 | 本学科首页   官方微博 | 高级检索  
     

基于EMD和包络分析的城轨列车滚动轴承故障诊断
引用本文:陈刚,左成,邢宗义,姚小文. 基于EMD和包络分析的城轨列车滚动轴承故障诊断[J]. 铁路计算机应用, 2016, 25(7): 57-60
作者姓名:陈刚  左成  邢宗义  姚小文
作者单位:1.广州地铁集团有限公司 运营事业总部,广州 510308;
基金项目:国家科技支撑计划项目(2011BAG01B05);中央高校基本科研业务费专项资金项目(AE89454)。
摘    要:为了准确识别城轨列车滚动轴承故障类型,研究了一种基于经验模态分解(EMD,Empirical Mode Decomposition)和包络分析的滚动轴承故障诊断方法。对滚动轴承的振动信号进行EMD分解,得到若干个本征模态函数(IMF,Intrinsic Mode Function)之和,对包含主要信息成分的IMF分量作包络分析,根据包络谱的故障特征频率判断滚动轴承故障类型。实验结果表明,该方法能够准确有效地识别城轨列车滚动轴承的故障类型。

关 键 词:滚动轴承   故障诊断   EMD   包络分析
收稿时间:2016-03-16

Fault diagnosis for rolling bearing of Urban Trnsit trains based on EMD and envelope spectrum
Affiliation:1.Operation Division, Guangzhou Metro Corporation, Guangzhou 510308, China;2.School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:Aiming at the problem of fault diagnosis for rolling bearing of Urban Transit trains, a method combined empirical mode decomposition (EMD) with envelope spectrum was researched on the basis of roller bearing vibration signals. Rolling bearing vibration signals were decomposed into a finite number of intrinsic mode functions(IMFs) by using EMD. Envelope spectrum was used to calculate some IMFs including the main information. Fault pattern was determined by contrast with characteristic defect frequencies of rolling bearing. The experiment result indicated that the fault pattern of rolling bearing could be identified effectively by the researched method.
Keywords:
点击此处可从《铁路计算机应用》浏览原始摘要信息
点击此处可从《铁路计算机应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号