首页 | 本学科首页   官方微博 | 高级检索  
     检索      

新型全自动轨道巡检车动力学性能
引用本文:昌超,凌亮,孙宇,翟婉明,王开云,王贵东.新型全自动轨道巡检车动力学性能[J].交通运输工程学报,2021,21(6):194-208.
作者姓名:昌超  凌亮  孙宇  翟婉明  王开云  王贵东
作者单位:西南交通大学牵引动力国家重点实验室,四川成都 610031;南京工业大学交通运输工程学院,江苏南京 210009;成都轨道交通产业技术研究院有限公司,四川成都 610031
基金项目:国家自然科学基金项目51735012国家自然科学基金项目51825504国家自然科学基金项目52072317
摘    要:为准确评估某新型全自动智能轨道巡检车的动力学性能,开展了轨道巡检车动力学数值仿真;轮轨接触采用非椭圆多点接触Kik-Piotrowski算法模拟,车辆系统建模过程中考虑悬挂力元非线性与轮轨接触几何非线性特性等因素,同时考虑车载设备参振影响;针对车轮踏面表面包裹高硬度聚氨酯的特殊结构,利用有限元软件ABAQUS建立了轮轨局部接触模型,采用Mooney-Rivlin橡胶模型模拟了聚氨酯特殊性质,计算了轮轨等效接触刚度;根据有限元计算结果修正了Kik-Piotrowski算法中的相关参数;基于Craig-Bampton模态综合法和多体动力学软件UM建立了车辆-轨道刚柔耦合模型;为验证仿真模型的准确性,开展了实车动力学试验;重点分析了直线和300 m小半径曲线,运行速度10~30 km·h-1工况下巡检车的振动响应。研究结果表明:车辆正常运行时,中间视觉模块垂向最大加速度大于左侧视觉模块垂向最大加速度,横向最大加速度小于左侧视觉模块横向最大加速度,车架最大加速度大于视觉模块最大加速度;车架中部易产生垂向弯曲变形,和视觉模块安装位置有胶垫减振有关;轨道巡检车在直线和300 m小半径区间运行性能整体良好,其中车辆在300 m小半径曲线段内30 km·h-1运行时,轮重减载率最大可达0.92,车架部位振动响应较大,为保证车载设备的安全性和避免车辆脱轨的风险,建议曲线段内检测速度控制在20 km·h-1左右。 

关 键 词:轨道检测  轨检车  车辆系统动力学  轮轨接触刚度  Kik-Piotrowski算法
收稿时间:2020-07-03

Dynamics performance of new type of fully automatic track inspection vehicle
CHANG Chao,LING Liang,SUN Yu,ZHAI Wan-ming,WANG Kai-yun,WANG Gui-dong.Dynamics performance of new type of fully automatic track inspection vehicle[J].Journal of Traffic and Transportation Engineering,2021,21(6):194-208.
Authors:CHANG Chao  LING Liang  SUN Yu  ZHAI Wan-ming  WANG Kai-yun  WANG Gui-dong
Institution:1.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China2.College of Transportation Science and Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China3.Chengdu Rail Transit Industry Technology Research Institute Co., Ltd., Chengdu 610031, Sichuan, China
Abstract:Dynamics numerical simulations of a track inspection vehicle were performed to precisely evaluate the dynamics performance of a new type of fully automatic intelligent track inspection vehicle. The nonelliptical multipoint contact Kik-Piotrowski algorithm was adopted for the wheel-rail contact. During the vehicle system modeling process, the factors such as the nonlinear suspension force elements and geometric nonlinear characteristics of the wheel-rail contact were considered, and the influence of vehicle-mounted equipment vibration was analyzed. For the unique structure of the wheel tread surface wrapped with high-hardness polyurethane, the finite element software ABAQUS was used to establish the wheel-rail local contact model. The Mooney-Rivlin rubber model was utilized to simulate the distinct properties of polyurethane, and the wheel-rail equivalent contact stiffness was calculated. The relevant parameters in the Kik-Piotrowski algorithm were corrected based on the finite element calculation results. The coupled vehicle-track rigid-flexible model was established using the Craig-Bampton modal synthesis method and the multibody dynamics software UM. To verify the accuracy of the simulation model, the real vehicle dynamics test was carried out. The vibration responses of the inspection vehicle under the working conditions of the straight line and 300 m small-radius curve at running speed of 10-30 km·h-1 were analyzed. Research results show that when the vehicle runs normally, the vertical maximum acceleration of the middle-vision module exceeds that of the left-vision module. Moreover, the lateral maximum acceleration is lower than that of the left-vision module, and the maximum acceleration of the frame exceeds the value of the vision module. The middle part of the frame is prone to vertical bending and deformation because of the rubber cushion at the installation position of the vision module. The track inspection vehicle runs satisfactorily along a straight line and the 300 m small-radius section. When the vehicle runs at 30 km·h-1 on the 300 m small-radius curve section, the maximum wheel-load reduction rate can reach 0.92, and the vibration response of the frame is relatively large. The inspection speed in the curve section should be controlled at approximately 20 km·h-1 to ensure the safety of vehicle-mounted equipment and prevent the vehicle derailment. 5 tabs, 24 figs, 31 refs. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号