首页 | 本学科首页   官方微博 | 高级检索  
     

基于TQWT和稀疏表示的滚动轴承故障诊断方法
引用本文:牛一捷, 李花, 邓武, 费继友, 孙亚丽, 刘芝博. 基于TQWT和稀疏表示的滚动轴承故障诊断方法[J]. 交通运输工程学报, 2021, 21(6): 237-246. doi: 10.19818/j.cnki.1671-1637.2021.06.018
作者姓名:牛一捷  李花  邓武  费继友  孙亚丽  刘芝博
作者单位:1.大连交通大学 软件学院,辽宁 大连 116028;;2.大连交通大学 机车车辆工程学院,辽宁 大连 116028;;3.中国民航大学 电子信息与自动化学院,天津 300300;;4.大连交通大学 机械工程学院,辽宁 大连 116028
基金项目:国家自然科学基金项目62001079国家自然科学基金项目51605068国家科技支撑计划2015BAF20B02辽宁省教育厅科学研究经费项目LJKZ0481
摘    要:
基于稀疏表示理论,提出了一种采用可调品质因子小波变换(TQWT)的滚动轴承故障诊断新方法,分析了包含早期故障成分的原始采集振动信号的特点和早期故障信号的特性,研究了稀疏表示模型在解决故障特征提取问题和故障类型识别问题的应用;运用TQWT将原始信号转换为一组子带小波系数集,研究了利用迭代收缩阈值算法提取出稀疏小波系数的有效性和谱峭度对故障冲击信号敏感的特性,通过计算各子带信号分量的谱峭度,选取包含故障信息明显的子带小波系数,建立了包含稀疏故障信号分量的故障特征提取方法;利用提取出的故障信号稀疏表示分类模型,实现了基于稀疏表示的滚动轴承故障诊断方法。试验结果表明:在凯斯西储数据集上,提出的故障特征提取方法在剔除干扰成分方面有显著效果,提出方法对于4种类型数据的平均诊断准确率为99.83%,对于10种类型数据的平均诊断准确率为97.73%;与只运用TQWT和迭代收缩阈值算法进行故障特征提取的方法相比,故障诊断精度提高了11.60%,算法运行时间减小8%;在QPZZ-Ⅱ旋转机械平台采集到的振动数据集上,提出的方法对于4种类型数据的平均诊断准确率为100%;与传统小波去噪方法相比,准确率提高了35.67%,算法运行时间减小了7.25%。可见,本文提出的方法可以有效解决滚动轴承故障诊断问题。

关 键 词:车辆工程   滚动轴承   故障诊断   稀疏表示   可调品质因子小波变换   特征提取
收稿时间:2021-06-18

Rolling bearing fault diagnosis method based on TQWT and sparse representation
NIU Yi-jie, LI Hua, DENG Wu, FEI Ji-you, SUN Ya-li, LIU Zhi-bo. Rolling bearing fault diagnosis method based on TQWT and sparse representation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 237-246. doi: 10.19818/j.cnki.1671-1637.2021.06.018
Authors:NIU Yi-jie  LI Hua  DENG Wu  FEI Ji-you  SUN Ya-li  LIU Zhi-bo
Affiliation:1. Software Technology Institute, Dalian Jiaotong University, Dalian 116028, Liaoning, China;;2. College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China;;3. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China;;4. School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
Abstract:
Based on the sparse representation theory, a new method of rolling bearing fault diagnosis was proposed using the tunable-Q wavelet transform (TQWT). The characteristics of the original vibration signals and early fault signals containing early fault components were analyzed, and the applications of the sparse representation model to solve the problem of fault feature extraction and fault type recognition were studied. The original signal was transformed into a set of sub-band wavelet coefficients using the TQWT. The effectiveness of extracting sparse wavelet coefficients using an iterative threshold shrinkage algorithm and the sensitivity of spectral kurtosis to fault impact signals were studied. By calculating the spectral kurtosis of each sub-band signal component and selecting the sub-band wavelet coefficient that contains obvious fault information, a fault feature extraction method for the sparse fault signal component was established. Using the sparse representation classification model of extracted fault signals, the method of rolling bearing fault-type recognition based on sparse representation was realized. Experimental results indicate that the proposed fault feature extraction method has a significant effect in eliminating interference components in the Case Western Reserve University dataset. The average diagnostic accuracy for the four types of data is 99.83%. The average diagnostic accuracy for the 10 types of data is 97.73%. Compared with the TQWT and iterative threshold shrinkage algorithm for fault feature extraction, the fault diagnosis accuracy of the proposed method improves by 11.60%, and the running time reduces by 8%. For the vibration dataset collected by the QPZZ-Ⅱ rotating machinery platform, the average diagnostic accuracy of the proposed method for the four types of data is 100%. Compared with the traditional wavelet denoising method, the accuracy of the proposed method improves by 35.67%, and the running time reduces by 7.25%. Therefore, the proposed method can effectively solve the problem of rolling-bearing fault diagnosis. 7 tabs, 7 figs, 30 refs. 
Keywords:vehicle engineering  rolling bearing  fault diagnosis  sparse representation  tunable-Q wavelet transform  feature extraction
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号