摘 要: | 为了提高地铁客流量预测的准确性,基于传统的PSO(粒子群优化)算法与BLS (宽度学习系统),提出一种新的地铁客流预测模型,即PSO-BLS算法。首先,对地铁站点的繁华程度、前一时段进站量、前一时段出站量及前一时段断面客流量等参数进行分析,并根据分析结果提出需要根据工作日和双休日分别对地铁客流量进行预测。其次,利用PSO算法对BLS的特征层偏置进行优化。最后,以福州地铁1号线AFC(自动售检票)系统中记录的大量乘客出行数据为例,对所提PSO-BLS算法进行验证。验证结果表明:与传统的地铁客流量预测算法BP(反向传播)神经网络和ELM(极限学习机)相比,PSO-BLS算法获得的计算结果在多项性能指标中均取得了较优异的表现;对BLS的特征层偏置进行优化可以提高BLS的计算精度,为地铁客流量预测提供更精确的计算结果。
|