首页 | 本学科首页   官方微博 | 高级检索  
     

一类a+b型浅水波方程的爆破现象和无限传播速度研究
引用本文:赵永叶. 一类a+b型浅水波方程的爆破现象和无限传播速度研究[J]. 广州航海高等专科学校学报, 2020, 28(1): 66-69. DOI: 10.3969/j.issn.1009-8526.2020.01.014
作者姓名:赵永叶
作者单位:广州航海学院 基础教学部,广东 广州510725
基金项目:广州航海学院创强项目青年创新人才类项目
摘    要:本文研究了一类包含了Camassa-Holm(CH)和Degasperis-Procesi(DP)方程的非线性浅水波方程.首先建立了这类方程在Sobolev空间中解的局部适定性,爆破性.其次,我们讨论了这类方程的无限传播速度:如果初始值u0(·)具有紧支集,那么方程以u0(·)为初值的局部解u(t,·)不再具有紧支集,并且它在存在区间内呈现指数衰减的性质.

关 键 词:浅水波方程  爆破性  无限传播速度

The Blow Up Phenomenon and Propagation Speed for a Class of Shallow Wter Equation
ZHAO Yong-ye. The Blow Up Phenomenon and Propagation Speed for a Class of Shallow Wter Equation[J]. Journal of Guangzhou Maritime College, 2020, 28(1): 66-69. DOI: 10.3969/j.issn.1009-8526.2020.01.014
Authors:ZHAO Yong-ye
Affiliation:(Department of Bosic Courses,Guangzhou Maritime University,Guangzhou Guangdong 510725,China)
Abstract:In this paper we study a kind of equation which includes the famous Cammassa-Holm(CH)and Degasperis-Procesi(DP)equation as special cases.We firstly study the local wellposedness in Sobolev space and the blow-up for the system.Secondly,infinite propagation speed for the system is proved in the following sense:while the corresponding nontrivial solution with compactly supported initial datum does not have compact-support any longer in its lifespan,it will decay exponentially at infinity throughout its evolution.
Keywords:shallow water equation  blow up  infinite propagation speed
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号