首页 | 本学科首页   官方微博 | 高级检索  
     

基于层次集成学习的高光谱图像分类
引用本文:刘柏森,张晔. 基于层次集成学习的高光谱图像分类[J]. 交通科技与经济, 2016, 0(4): 75-80. DOI: 10.19348/j.cnki.issn1008-5696.2016.04.019
作者姓名:刘柏森  张晔
作者单位:1. 黑龙江工程学院 电气与信息工程学院,黑龙江 哈尔滨 150050; 哈尔滨工业大学 电子与信息工程学院,黑龙江 哈尔滨150001;2. 黑龙江工程学院 电气与信息工程学院,黑龙江 哈尔滨,150050
基金项目:黑龙江省自然科学基金(F201322)
摘    要:为提高高光谱图像(HSI)分类精度,基于集成学习方法提出高光谱图像分类的层次集成学习新框架。采用两种集成学习策略:外部集成及内部集成。在外部集成阶段,构造多种高光谱图像的光谱和空间特征,使外部集成呈高度多样性,有利于提高分类精度;内部集成阶段,针对关联多特征集中的个体,Adaboost算法实现个体分类性能的提高。两组高光谱数据的实验结果表明,与原始的Adaboost和单分类器相比较,该方法在整体精度方面有更好的性能。

关 键 词:Adaboost算法  集成  特征提取  高光谱图像分类  支持向量机

Hierarchy Ensemble Learning for Hyperspectral Imagery Classification
LIU Baisen;ZHANG Ye. Hierarchy Ensemble Learning for Hyperspectral Imagery Classification[J]. Technology & Economy in Areas of Communications, 2016, 0(4): 75-80. DOI: 10.19348/j.cnki.issn1008-5696.2016.04.019
Authors:LIU Baisen  ZHANG Ye
Affiliation:LIU Baisen;ZHANG Ye;Heilongjiang Institute of Technology,College of Electrical and Information Engineering;School of Electronics and Information Engineering,Harbin Institute of Technology;
Abstract:Ensemble learning based methods have demonstrated impressive capacities to improve the classification accuracy of hyperspectral imagery (HSI) .In this paper ,we present a novel hierarchy ensemble learning framework for HSI classification .Hierarchy ensemble is conducted by combing multi‐strategy ensemble in view of ensemble diversity and the accuracy of individual members . In the outer stage ,the allocation of multi‐features to ensemble individuals achieves a high degree of outer ensemble diversity .M ulti‐features of HSI are the integration of diverse spectral and spatial features .In the inner stage ,Adaboost is implemented for each individual in the associated multi‐feature set to improve the individuals’classification performance .Experimental results on two hyperspectral data sets reveal that our proposed method obtains sound performances in terms of better overall accuracies ,compared with original Adaboost and single classifier .
Keywords:Adaboost algorithm  ensemble  feature extraction  hyperspectral imagery classification  support vector machine
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号