首页 | 本学科首页   官方微博 | 高级检索  
     

基于组合深度学习的快速路车道级速度预测研究
引用本文:谷远利,陆文琦,李萌,王硕,邵壮壮. 基于组合深度学习的快速路车道级速度预测研究[J]. 交通运输系统工程与信息, 2001, 19(4): 79-86
作者姓名:谷远利  陆文琦  李萌  王硕  邵壮壮
作者单位:1. 北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044; 2. 东南大学交通学院,南京 211189
基金项目:国家自然科学基金/ National Natural Science Foundation of China(41771478);北京市科技计划项目/ Beijing Municipal Science and Technology Project(Z121100000312101).
摘    要:随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道级速度预测模型.该模型利用基于信息熵的灰色关联分析提取空间特征变量,采用长短期记忆神经网络提取空间特征变量的时间特征,并利用门限递归单元神经网络得到预测结果.通过北京市东二环路车道断面实测微波数据验证发现,提取车道交通流的时空特征,CDL模型能够很好地拟合不同车道不同时段的速度变化趋势,可有效地实现车道速度的单步及多步预测,且该模型的预测精度和稳定性均优于传统预测模型.

关 键 词:城市交通  速度预测  深度学习  交通流  时空特征  
收稿时间:2018-11-28

Lane-level Traffic Speed Prediction for Expressways Based on A Combined Deep Learning Model
GU Yuan-li,LU Wen-qi,LI Meng,WANG Shuo,SHAO Zhuang-zhuang. Lane-level Traffic Speed Prediction for Expressways Based on A Combined Deep Learning Model[J]. Journal of Transportation Systems Engineering and Information Technology, 2001, 19(4): 79-86
Authors:GU Yuan-li  LU Wen-qi  LI Meng  WANG Shuo  SHAO Zhuang-zhuang
Affiliation:1. MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China; 2. School of Transportation, Southeast University, Nanjing 211189, China
Abstract:With the increasing application of internet of things, cloud computing and big data in the field of intelligent transportation system, traditional traffic prediction methods which take the road sections as research object cannot satisfy the development of intelligent connected technique. To forecast the traffic state of lanes, a novel combined deep learning (CDL) model is proposed to predict the travel speed of the lanes of expressways. First, the CDL model introduces an entropy- based grey relation analysis to extract the variables of spatial characteristics. Then, the CDL model uses long short- term memory neural network to capture the temporal characteristics of the extracted spatial variables. Finally, the gated recurrent unit neural network is utilized to predict the travel speed of target lane section in the next time intervals. Validated by the ground-truth microwave data of lane sections on the 2nd ring road of Beijing, the proposed model can well capture the trend of speed change during different time periods of the different lanes and realize the single-step and multi-step prediction of lane speed effectively. The prediction results illustrate that the CDL model outperforms many traditional methods in terms of accuracy and stability.
Keywords:urban traffic  speed prediction  deep learning  traffic flow  spatio-temporal characteristics  
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号