首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机重复爬山法的交通状态预测
引用本文:钱超,代亮,林杉,李雪. 基于随机重复爬山法的交通状态预测[J]. 交通运输系统工程与信息, 2016, 16(1): 162-168
作者姓名:钱超  代亮  林杉  李雪
作者单位:长安大学电子与控制工程学院,西安710064
基金项目:国家自然科学基金项目/National Natural Science Foundation of China (51308057);陕西省自然科学基金项目/ Natural Science Foundation in Shanxi Province of China (2013JQ8006);中央高校基本科研业务费专项资金项目/Fundamental Research Funds for the Central Universities (310832161006,2014G1321035).
摘    要:合理构造影响交通状态网络结构,是实现交通状态预测的前提条件.为克服爬 山法易陷入局部最优的缺陷,提出一种基于随机重复爬山法的交通状态预测方法.对随机 生成的有向无环图迭代运行爬山法得到多网络结构;通过有向边置信度的定义和置信度 阈值的计算,确定了最优贝叶斯网络结构中节点和有向边选取准则;利用最优贝叶斯网 络结构,实现了畅通、平稳、拥挤和阻塞等4 种交通状态的预测并综合评价.分析结果表 明,该方法仅选取时段、节假日等两变量时,对交通状态预测总体准确率超过85%,能够 为高速公路运行状态监测预警和决策分析提供有效方法和数据支撑.

关 键 词:智能交通  交通状态预测  随机重复爬山法  贝叶斯网络  数据挖掘  
收稿时间:2015-09-09

Traffic Status Prediction Based on Random Restart Hill-climbing
QIAN Chao,DAI Liang,LIN Shan,LI Xue. Traffic Status Prediction Based on Random Restart Hill-climbing[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(1): 162-168
Authors:QIAN Chao  DAI Liang  LIN Shan  LI Xue
Affiliation:School of Electronic and Control Engineering, Chang’an University, Xi’an 710064, China
Abstract:Construct of reasonable network structure which influencing traffic status is the prerequisite of realizing traffic status prediction. In order to improve Hill-climbing algorithm, which may trap into the local optimum instead of the global optimum, a new traffic status prediction method is proposed based on Random Restart Hill-climbing. Proposed multi-network structures are obtained by executing Hill-climbing algorithm iteratively, to create directed acyclic graphs randomly. Furthermore, selection criterion for nodes and directed edges in the optimal Bayesian network structure is determined by the definition of directed edges-confidence and the calculation of confidence- threshold. The intelligent predictions and comprehensive evaluations of four kinds of traffic status including free, smooth, congestion and jam are achieved by using optimal Bayesian network structure. Results indicate that the prediction results are satisfactory with a high accuracyrate of more than 85% only selecting two variables such as hour and holiday. Therefore, the proposed method provides an effective way and experimental proof for monitoring, warning and decision analysis of expressway operation status.
Keywords:intelligent transportation  traffic status prediction  Random Restart Hill- climbing  Bayesian network  data mining  
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号