首页 | 本学科首页   官方微博 | 高级检索  
     

基于生成式对抗网络的路网交通流数据补全方法
引用本文:王力,李敏,闫佳庆,张玲玉,潘科,李正熙. 基于生成式对抗网络的路网交通流数据补全方法[J]. 交通运输系统工程与信息, 2018, 18(6): 63-71
作者姓名:王力  李敏  闫佳庆  张玲玉  潘科  李正熙
作者单位:北方工业大学,城市道路交通智能控制技术北京市重点实验室,北京 100144
基金项目:北京市科技新星计划交叉学科合作课题/ Beijing New Star Project in Inter-discipline Science and Technology (XXJC201709);河北省自然科学基金(重点)/ Hebei Provincial Major Program of Natural Science Foundation(F06203496);北京市青年骨干个人项目/ Beijing Youth Backbone Individual Project(2017000020124G287).
摘    要:交通信息的完整性直接影响着城市交通管理的效率.针对城市道路交通中因路段检测器覆盖不全或设备损坏等造成的流量检测数据缺失问题,本文提出基于生成式对抗网络 (Generative Adversarial Network,GAN)算法的交通流量数据补全方法.首先,以路段实际流量为基础,进行图像化处理生成路网二维信息图;其次,计算考虑时空信息补偿的路网关联矩阵,利用GAN算法分析并实现路网二维信息图缺失部分的补全,进而得到路段交通流量的完整数据;最后,利用实际数据,对比分析了本文方法与相空间重构的卡尔曼滤波方法对缺失数据的补全情况.实例分析结果验证了本文方法的可行性和有效性.

关 键 词:智能交通  路网交通信息补全  生成式对抗网络  交通流量  交通信息图像化  
收稿时间:2018-07-12

Urban Traffic Flow Data Recovery Method Based on Generative Adversarial Network
WANG Li,LI Min,YAN Jia-qing,ZHANG Ling-yu,PAN Ke,LI Zheng-xi. Urban Traffic Flow Data Recovery Method Based on Generative Adversarial Network[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(6): 63-71
Authors:WANG Li  LI Min  YAN Jia-qing  ZHANG Ling-yu  PAN Ke  LI Zheng-xi
Affiliation:Beijing Key Lab of Urban Intelligent Traffic Control Technology, North China University of Technology, Beijing 100144, China
Abstract:The completeness of traffic information has a direct influence on urban traffic management efficiency. Aiming at the problem of missing detection data in urban road traffic caused by incomplete coverage of road detectors or equipment damage, this paper proposes a method of traffic flow data completion based on Generative Adversarial Network (GAN) algorithm. Firstly, the traffic flow data of the links are processed graphically to generate the two-dimensional information map of network. Secondly, the road network association matrix which considered the temporal and spatial information compensation is calculated. The GAN algorithm is used to analyze and archive the completion and reconstruction the missing part of information map, and then the traffic flow complete data of the link is obtained. Finally, the proposed method is compared and analyzed with Kalman filtering method of phase space reconstruction. And the results show that the proposed method in this paper is effective.
Keywords:intelligent transportation  information completion  generative adversarial network  traffic flow  traffic information visualization  
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号