首页 | 本学科首页   官方微博 | 高级检索  
     

基于MS-RG混合图像分割模型的道路检测研究
引用本文:刘步实,吕永波,吕万钧,李晶,欧阳琪. 基于MS-RG混合图像分割模型的道路检测研究[J]. 交通运输系统工程与信息, 2019, 19(2): 60-65
作者姓名:刘步实  吕永波  吕万钧  李晶  欧阳琪
作者单位:北京交通大学交通运输学院,北京,100044;北京交通大学交通运输学院,北京,100044;北京交通大学交通运输学院,北京,100044;北京交通大学交通运输学院,北京,100044;北京交通大学交通运输学院,北京,100044
基金项目:国家自然科学基金/ National Natural Science Foundation of China (61872036);国家重点研发计划项目/ National Key Technologies Research & Development Program (2017YFC0804900).
摘    要:道路场景因其结构的多样性、纹理变化的复杂性和自然曝光的不稳定性,使得传统基于道路分割的道路检测方法大多存在信息冗余,并且存在边界丢失、模糊等质量问题.本文首先在道路图像上使用 Meanshift均值漂移算法,通过空间内的概率密度呈梯形上升去寻找局部最优,并搜索属于同一模点的像素然后生成获得超像素块.然后利用 Meanshift算法获得的聚类超像素块进行多种子点区域生长,规范生长规则,克服不能得到封闭边界的缺陷,改进道路图像的分割效果.实验结果表明,本文提出的模型适用性强,相比于传统方法有效地提升了分割准确性和实时性,可准确识别出图像中的道路信息,确保车辆能够行驶在可行驶区域上.

关 键 词:智能交通  道路检测  图像分割  均值漂移  区域生长
收稿时间:2018-11-08

Road Detection Based on MS-RG Hybrid Image Segmentation Model
LIU Bu-shi,LV Yong-bo,LV Wan-jun,LI Jing,OUYANG Qi. Road Detection Based on MS-RG Hybrid Image Segmentation Model[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 60-65
Authors:LIU Bu-shi  LV Yong-bo  LV Wan-jun  LI Jing  OUYANG Qi
Affiliation:School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Abstract:Due to the diversity of its structure, the complexity of texture changes and the instability of natural exposure, road scenes based on road segmentation mostly have information redundancy, and there are quality problems such as boundary loss and blur. In this paper, we first used the Meanshift algorithm on the road image to find the local optimum by the trapezoidal rise of the probability density in the space, and search for the pixels with the same modulus and then get together to form the super pixel block. Then, the clustering super- pixel block obtained by the Meanshift algorithm was used to perform a variety of sub-point region growth, standardized the growth rule, overcome the defect that the closed boundary cannot be obtained, improve the segmentation effect of the road image. The experimental results show that the proposed method has strong applicability, and it can effectively improve the segmentation accuracy and real-time performance compared with the traditional method, and can accurately identify the road information in the image to ensure that the vehicle can travel on the travelable area.
Keywords:intelligent transportation  road detection  image segmentation  mean shift  region growing  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号