首页 | 本学科首页   官方微博 | 高级检索  
     检索      

时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征
引用本文:梅元贵,李绵辉,胡啸,杜俊涛.时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J].交通运输工程学报,2021,21(4):150-162.
作者姓名:梅元贵  李绵辉  胡啸  杜俊涛
作者单位:1.兰州交通大学 甘肃省轨道交通力学应用工程实验室,甘肃 兰州 7300702.中车青岛四方机车车辆股份有限公司,山东 青岛 266111
基金项目:国家重点研发计划项目2016YFB1200602-39
摘    要:基于三维数值模拟方法,采用一维可压缩非定常不等熵流动模型和改进广义黎曼变量特征线方法,在隧道入口端未设置以及设置开口型缓冲结构条件下,分别研究了初始压缩波在隧道洞内的传播及洞口(默认为出口)的微气压波特性。研究结果表明:隧道入口设置开口型缓冲结构与无缓冲结构相比,其产生的初始压缩波的最大压力梯度下降了67.56%;初始压缩波在隧道内的传播过程中存在先激化后衰减的过程,其中未设置缓冲结构和设置开口型缓冲结构的临界长度分别为2和6 km,而满足微气压波控制标准的临界隧道长度分别为33和34 km;虽然开口型缓冲结构可较大幅度降低初始压缩波的最大压力梯度,但是对于长大隧道而言,由于传播过程中压缩波不断激化,开口型缓冲结构实际上对减缓微气压波的作用存在较大幅度的弱化,建议还应采取如竖井等工程措施以减缓激化;缓冲结构对不同隧道长度的洞口内压缩波的最大压力梯度的影响不同,所以需要结合不同类型缓冲结构和长度等因素来确定对应的最佳隧道长度匹配关系。 

关 键 词:隧道工程    初始压缩波传播    微气压波    特征线    高速磁浮列车    双线隧道    开口型缓冲结构
收稿时间:2021-02-28

Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h-1 maglev train entering tunnels
MEI Yuan-gui,LI Mian-hui,HU Xiao,DU Jun-tao.Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h-1 maglev train entering tunnels[J].Journal of Traffic and Transportation Engineering,2021,21(4):150-162.
Authors:MEI Yuan-gui  LI Mian-hui  HU Xiao  DU Jun-tao
Institution:1.Gansu Province Engineering Laboratory of Rail Transit Mechanics Application, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China2.CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, Shandong, China
Abstract:Based on a three-dimensional numerical simulation method, a one-dimensional compressible unsteady non-isentropic flow model and an improved generalized Riemann variable characteristic line method were developed. The initial compression wave propagation in the tunnel and the micro-pressure wave characteristics at the portal (default exit) of the tunnel when the tunnel entrance without and with an opening buffer structure were investigated. Analysis results show that compared to the nonbuffer structure at the tunnel entrance, the maximum pressure gradient of the initial compression wave generated by setting the opening buffer structure decreases by 67.56%. During the propagation of the initial compression waves in the tunnel, intensification first occurs, followed by attenuation. The critical lengths of the nonbuffer and opening buffer structures are 2 and 6 km, respectively, whereas the critical lengths of the tunnel satisfying the control standard of the micro-pressure waves are 33 and 34 km, respectively. Although the opening buffer structure can significantly reduce the maximum pressure gradient of the initial compression waves for a long tunnel, owing to the continuous intensification of the compression wave during propagation, the effect of the opening buffer structure on the mitigation of the micro-pressure waves is significantly weakened. Engineering measures (such as shafts) should be adopted to mitigate intensification. In addition, the effects of the buffer structure on the maximum pressure gradient of compression waves are different in the portals of different tunnel lengths. Therefore, the different types of buffer structure and length factors should be combined to determine the corresponding optimal tunnel length matching relationship. 1 tab, 24 figs, 33 refs. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号