首页 | 本学科首页   官方微博 | 高级检索  
     

大型机场进场航空器联合调度模型
引用本文:姜雨, 刘振宇, 胡志韬, 吴薇薇, 王喆. 大型机场进场航空器联合调度模型[J]. 交通运输工程学报, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017
作者姓名:姜雨  刘振宇  胡志韬  吴薇薇  王喆
作者单位:1.南京航空航天大学 民航学院, 江苏 南京 211106;;2.北京首都国际机场股份有限公司,北京 100621
摘    要:
为减少进场航空器总延误与总滑行时间,研究了大型机场进场航空器联合调度问题;分别以跑道排序时间跨度和总延误加权和最小、被分配至远机位航班数量最少、进场航空器总滑行时间最短为目标函数,构建了跑道、停机位、滑行道三大系统的正向联合调度模型;在此基础上引入停机位再调整模型,通过调整额外滑行时间较大的航空器的停机位指派方案对滑行道调度进行反向优化;设计了一种改进型基因编码的遗传算法以避免非可行解的产生,提高求解效率。仿真结果表明:对比先到先服务策略,改进型遗传算法的进场航空器跑道排序时间减少了20 s,总延误从254 350 s降至199 760 s,减少了21%;对比蚁群算法,改进型遗传算法的总延误减少了20 060 s,降低了9%,且迭代曲线更平稳;改进遗传算法迭代12次时即能为进场航空器全部分配至近机位,18架进场航空器的总滑行时间从4 575 s降至4 145 s,降低了9%,且滑行过程中仅发生3次冲突;11架航空器均选择最短路滑行,仅3架航空器的额外滑行时间超过40 s;经停机位调整后,总额外滑行时间减少58 s,降低了27%。可见,进场航空器联合调度模型能提高大型机场运行效率,为场面资源管理提供决策参考。

关 键 词:航空运输   航空器运行   联合调度   改进型遗传算法   反向优化   停机位调整
收稿时间:2021-09-10

Coordinated scheduling model of arriving aircraft at large airport
JIANG Yu, LIU Zhen-yu, HU Zhi-tao, WU Wei-wei, WANG Zhe. Coordinated scheduling model of arriving aircraft at large airport[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017
Authors:JIANG Yu  LIU Zhen-yu  HU Zhi-tao  WU Wei-wei  WANG Zhe
Affiliation:1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China;;2. Beijing Capital International Airport Co., Ltd., Beijing 100621, China
Abstract:
The problem of coordinated scheduling of arriving aircraft at large airports was studied to reduce the total delay and taxi times of arriving aircraft. The minimum weighted sum of runway sequencing time span and total delay time, the fewest number of flights assigned to remote gates, and the shortest taxi time of arriving aircraft were taken as the objective functions, respectively. A forward coordinated scheduling model for the systems of runway, gate, and taxiway was constructed. A gate re-adjustment model was used to perform the reverse optimization of the taxiway by adjusting the gate assignments of aircrafts with long taxi times. A genetic algorithm (GA) with improved gene coding was designed to prevent the generation of unfeasible solutions and to improve efficiency. Simulation results show that, compared with the first-come-first-serve strategy, the improved GA reduces the runway sequencing time of arriving aircraft by 20 s and the total delay time by 21% from 254 350 s to 199 760 s, respectively. Compared with the ant colony optimization, the improved GA reduces the total delay time by 20 060 s (9%) and produces a smoother iteration curve. After 12 iterations of the improved GA, all arrival aircrafts can be assigned to bridge gates. The total taxi time of 18 arriving aircrafts decreases by 9% from 4 575 s to 4 145 s, and only 3 taxi conflicts occur. 11 aircrafts choose the shortest routes, and only 3 aircrafts have extra taxi time of more than 40 s. After gate adjustment, the total extra taxi time decreases by 58 s or 27%. Therefore, the proposed coordinated scheduling model for arriving aircraft can improve the operational efficiency of large airports and provide decision-making support for airfield resource management. 5 tabs, 11 figs, 31 refs. 
Keywords:air transportation  aircraft operation  coordinated scheduling  improved genetic algorithm  reverse optimization  gate adjustment
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号