首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进粒子群优化算法的船舶纵向运动参数辨识
引用本文:戴运桃,赵希人,刘利强. 基于改进粒子群优化算法的船舶纵向运动参数辨识[J]. 船舶力学, 2010, 0(Z1)
作者姓名:戴运桃  赵希人  刘利强
作者单位:哈尔滨工程大学理学院;哈尔滨工程大学自动化学院;
基金项目:国防科学技术工业委员会基础研究基金资助项目(41314020201)
摘    要:针对粒子群优化算法易于陷入局部最优的缺点,提出了一种改进的粒子群优化算法,并将改进的算法应用到船舶纵向运动模型的参数辨识。对辨识结果进行了验证,表明,利用改进的粒子群优化算法有较快的收敛速度和稳定性,辨识获得的水动力参数计算的结果误差均在允许范围内,得到的纵向运动的状态参数与理论观测值吻合度较高,辨识算法有效可行。

关 键 词:参数辨识  粒子群优化  水动力参数  纵向运动  

Parameter identification of ship vertical motions using improved particle swarm optimization
DAI Yun-taoa,b,ZHAO Xi-renb,LIU Li-qiang b. Parameter identification of ship vertical motions using improved particle swarm optimization[J]. Journal of Ship Mechanics, 2010, 0(Z1)
Authors:DAI Yun-taoa  b  ZHAO Xi-renb  LIU Li-qiang b
Affiliation:a.College of Science;b.College of Automation;Harbin Engineering University;Harbin 150001;China
Abstract:An improved PSO is proposed to solve the problem that PSO is easily trapped in the local mini-ma.The improved PSO is applied in the parameter identification of ship vertical motions.The verification of parameter identification shows that the improved PSO has higher convergence speed and stability.After the parameter identification,the error between calculating results of hydrodynamic model and the experiment da-ta is in the acceptable range.The state of vertical motions fits well to the theoretical calculat...
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号