首页 | 本学科首页   官方微博 | 高级检索  
     

财务报告舞弊识别的实证研究
引用本文:王雅,袁泉. 财务报告舞弊识别的实证研究[J]. 兰州交通大学学报, 2013, 0(5): 68-70
作者姓名:王雅  袁泉
作者单位:兰州交通大学经济管理学院,甘肃兰州730070
摘    要:随着舞弊手段日趋隐蔽,需要建立一个快速有效的识别模型。本文选取了24个相关指标作为解释变量,选取了72家财务报告舞弊上市公司作为样本。首先建立Logistic回归模型,模型的判断率达到了71.7%。然后将Logistie回归得到的7个解释变量,用运到BP神经网络模型之中,使判则率达到87.1%,高于出了16%。说明13I)神经网络的总体识别率更高。

关 键 词:财务报告  舞弊BP神经网络  Logistic回归

The Empirical Study of Financial Reporting Fraud
WANG Ya,YUAN Quan. The Empirical Study of Financial Reporting Fraud[J]. Journal of Lanzhou Jiaotong University, 2013, 0(5): 68-70
Authors:WANG Ya  YUAN Quan
Affiliation:(School of Economics and Management, Lanzhou Jiaotong University, Lanzhou 730070,China)
Abstract:With the increasing concealment for fraud ways, a rapid and efficient recognition model need to be established. In this paper,24 relative indicators are selected as explanatory variables;72 China's list compa- nies which had financial reporting fraud are selected as samples. Firstly, a logistic regression model is built, and the recognition rate of this model is 71.7 %. Seven explanatory variables from logistic regression is applied to BP network model. The recognition rae get to 87.1% ,which is 16% higher than the logistic regression model. It indicates that the general recognition rate of BP neural network model is better.
Keywords:financial reporting  fraud BP neural network  logistic regression
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号