首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Uncertainty analysis of extreme mooring loads associated with environmental contours and peak tension distributions
Institution:1. National Maritime Research Institute, 6-38-1, Shinkawa, Mitaka-shi, Tokyo, 181-0004, Japan;2. Faculty of Engineering Yokohama National University, 79-1 Tokiwadai Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan;1. School of Ocean Engineering and Technology, Sun Yat-Sen University, Zhuhai, China;2. Ocean Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;3. Petrobras, CENPES, Rio de Janeiro, Brazil;1. Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan, 430063, PR China;2. Departments of Naval Architecture, Ocean and Structural Engineering, School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, 430063, PR China;3. Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572025, PR China
Abstract:This paper aims to assess the uncertainty on the extreme mooring loads of floating system considering short-term variability. Two environmental contour approaches based on the inverse First and Second Order Reliability Methods are employed to identify critical sea states that may give rise to extreme loads. The uncertainty related to the construction of environmental contours is addressed including significant differences due to marginal distribution fitting, parameter estimation methods and joint models. Three measured datasets are analysed using a known conditional joint distribution and proposed mixed copula model. 3-h time domain numerical simulation for each sea state is conducted and the characteristic extreme responses of mooring lines subjected to design loads are assessed. The uncertainties due to various statistical models including the average conditional exceedance rate method as well as global maxima, peak-over-threshold method combined with Gumbel distribution, Generalized Extreme Value distribution, Generalized Pareto distribution and 3-parameter Weibull distribution are investigated and quantified. It is observed that marginal distributions, joint models and parameters estimation methods have apparent effect on design loads estimation, and the extreme tensions of the semi-submersible platform shows significant difference using various probabilistic models. The results indicate that those epistemic uncertainties should be account for in the reliability analysis or safety factor calibration for mooring systems.
Keywords:Extreme mooring loads  Environmental contour method  Probabilistic models  Short-term variability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号