首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的神经网络的船舶碰撞危险度的模型
引用本文:王则胜,施朝健. 基于改进的神经网络的船舶碰撞危险度的模型[J]. 中国航海, 2007, 0(1): 65-67
作者姓名:王则胜  施朝健
作者单位:1. 镇江船艇学院,江苏,镇江,212003;上海海事大学,上海,200135
2. 上海海事大学,上海,200135
摘    要:针对船舶碰撞危险度具有模糊性、不确定性等特点,依据模糊理论方法建立的船舶碰撞危险度的数学模型,直接采用来船航速、来船航向、来船对本船的相对舷角和来船对本船距离作为神经网络的输入,采用Levenberg-Mrquardt优化算法这种改进的BP神经网络进行训练和仿真,并与标准BP算法和动量BP算法进行比较,发现经过改进的网络求得碰撞危险度比标准BP算法和动量BP算法具有更好的效果,网络能够更有效收敛,大大提高了网络的收敛速度和泛化能力。

关 键 词:水路运输  碰撞危险度  神经网络  Levenberg-Mrquardt算法  仿真
文章编号:1000-4653(2007)01-0065-03
收稿时间:2006-11-15
修稿时间:2006-11-15

An Improved Neural Network Based Model of Collision Risk Index
WANG Ze-sheng,SHI Chao-jian. An Improved Neural Network Based Model of Collision Risk Index[J]. Navigation of China, 2007, 0(1): 65-67
Authors:WANG Ze-sheng  SHI Chao-jian
Affiliation:1. Zhenjiang Watercraft College of PLA, Zhenjiang 212003, China, 2. Shanghai Maritime University, Shanghai 200135, China
Abstract:For the characteristics of illegibility and uncertainty of vessel collision risk index a mathematical model of vessel collision risk index is set up based on fuzzy theory,which takes the coming vessel's velocity and course,the relative course and distance between the coming vessel and own vessel as inputs of network and adopts Levenberg-Mrquardt algorithm to train and simulate the network..Compared to traditional BP networks,this improved neural network has better effectiveness for prediction of collision risk index,which can be used conveniently in ship automatic collision avoidance systems.
Keywords:Waterway transportation  Collision risk index(CRI)  Neural networks  Levenberg-Mrquardt algorithm  Simulation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号