首页 | 本学科首页   官方微博 | 高级检索  
     

稳定跟车状态驾驶风格识别及迁移特性
作者姓名:彭金栓  赵文超  刘潞  刘通  张磊
作者单位:重庆交通大学交通运输学院
基金项目:国家重点研发计划项目(2018YFB1600501);;重庆市教委科技研究项目(KJQN202100719);
摘    要:为探究高速工况稳定跟车状态下不同类型驾驶人的跟车特性及驾驶风格识别方法,选取20名驾驶人开展实车驾驶试验,采集自然驾驶状态下的自车速度、跟车间距、跟车时距等指标,基于雷达数据等确定稳定跟车事件提取规则。通过耦合分析稳定跟车状态下的驾驶行为指标分布规律及跟车特性,选取跟车间距、跟车时距及加速踏板开度为聚类指标,使用K均值聚类算法对301段稳定跟车事件进行聚类分析,并根据不同风格类型出现的频数及所占比例将驾驶人划分为3种风格类型(保守型、一般型、激进型)。最后通过CART决策树方法对聚类结果进行验证,进一步分析长时间稳定跟车状态下驾驶风格的迁移特性。研究结果表明:随自车速度增大,跟车间距与加速踏板开度亦呈现增大趋势,且在不同速度区间下均具有显著性差异。不同速度区间下的跟车时距均值无明显变化,稳定分布于2.57~2.72 s。CART决策树验证驾驶风格聚类划分结果总体吻合率达99.7%。不同风格驾驶人的车速与油门踏板开度、跟车间距与跟车时距均存在显著性差异。随时间推移,保守驾驶人更加趋于保守,激进驾驶人更加趋于激进,一般驾驶人则相对较为稳定。研究结果可为高级别自动驾驶系统跟车控制策略及参数的...

关 键 词:交通工程  稳定跟车状态  驾驶风格  K均值聚类  自然驾驶  驾驶行为分析  迁移特性
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号