首页 | 本学科首页   官方微博 | 高级检索  
     

客货共线无砟轨道平顺状态预测模型
引用本文:马帅,高亮,刘秀波,蔡小培. 客货共线无砟轨道平顺状态预测模型[J]. 中国铁道科学, 2019, 0(3): 24-31
作者姓名:马帅  高亮  刘秀波  蔡小培
作者单位:北京交通大学土木建筑工程学院;中国铁道科学研究院集团有限公司基础设施检测研究所
基金项目:中国铁路总公司科技研究开发计划项目(2015G001-B)
摘    要:客货共线无砟轨道的轨道质量指数(TQI)具有随时间长期缓慢变化并伴随平稳波动的特点,而现有的预测模型难以预测这种变化。基于小波和时间序列分析预测方法,提出ARMA-BP神经网络和ARMA-SVR预测模型。通过小波分析将TQI时间序列分解为高频和低频2个部分,采用ARMA模型对高频部分建模,分别采用BP神经网络和支持向量回归SVR模型对低频部分建模,最后对高频和低频进行综合预测。此方法可根据具体情况对具有不同特性的TQI时间序列进行针对性建模,提高预测精度。运用此方法对包西线和太中线10个无砟轨道区段TQI时间序列进行预测,结果表明:ARMA-BP神经网络与ARMA-SVR的建模精度平均值分别为98.1%和98.5%,后验差分别为0.31和0.21,均达到1级;前者对已知数据的拟合精度高,而后者对未知数据预测能力较强、泛化能力更突出。

关 键 词:客货共线  无砟轨道  平顺状态  预测模型  轨道质量指数  支持向量回归(SVR)  BP神经网络  小波分解

Prediction Model for Rail Regularity State of Ballastless Track on Passenger-Freight Mixed Lines
MA Shuai,GAO Liang,LIU Xiubo,CAI Xiaopei. Prediction Model for Rail Regularity State of Ballastless Track on Passenger-Freight Mixed Lines[J]. China Railway Science, 2019, 0(3): 24-31
Authors:MA Shuai  GAO Liang  LIU Xiubo  CAI Xiaopei
Affiliation:(School of Civil Engineering,Beijing Jiaotong University,Beijing100044,China;Infrastructure Inspection Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing100081,China)
Abstract:The track quality index(TQI)of ballastless track on passenger-freight mixed line is characterized by slowly changing for long-term with time and accompanied by stationary fluctuations.However,the existing prediction models are incompetent to predict this variation.Based on wavelet analysis and time series prediction methods,two prediction models named ARMA-BP neural network and ARMA-SVR are put forward.Wavelet analysis algorithm is utilized to decompose the original TQI time series into high and low frequency components.Then ARMA model is used for high frequency component modeling,BP neural network and support vector regression(SVR)model are respectively used for low frequency component modeling.Finally,comprehensive prediction is made for high and low frequency components.This method can model TQI time series with different characteristics according to specific situations,which can improve prediction accuracy.Using this method,the TQI time series samples of ten ballastless track sections on Baotou-Xi an line and Taiyuan-Zhongwei line are predicted.Results show that the average modeling precisions of ARMA-BP neural network and ARMA-SVR are 98.1%and 98.5%,and the posterior error ratios are 0.31 and 0.21 respectively,both reaching level 1.The former model has a high fitting precision for the known data,and the latter has a strong ability to predict the unknown data,showing more outstanding generalization ability.
Keywords:Passenger-freight mixed line  Ballastless track  Rail regularity state  Prediction model  Track quality index  Support vector regression(SVR)  BP neural network  Wavelet decomposition
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号