首页 | 本学科首页   官方微博 | 高级检索  
     检索      

三线合一、三塔悬索桥风-车-桥耦合振动性能对比
引用本文:李永乐,徐昕宇,严乃杰,邓江涛,向活跃.三线合一、三塔悬索桥风-车-桥耦合振动性能对比[J].交通运输工程学报,2015,15(6):17-25.
作者姓名:李永乐  徐昕宇  严乃杰  邓江涛  向活跃
作者单位:西南交通大学 土木工程学院,四川 成都 610031
基金项目:国家自然科学基金项目U1334201 国家自然科学基金项目51278434
摘    要:以某三线合一、三塔悬索桥的2种设计方案(钢箱桁和钢桁方案)为工程背景, 通过车桥系统节段模型风洞试验, 测试了车辆和桥梁的三分力系数, 并基于风-车-桥系统空间耦合动力学模型, 采用自主研发的桥梁分析软件BANSYS, 对比分析了该桥的结构动力特性与风-车-桥耦合振动性能。分析结果表明: 三线合一、三塔悬索桥结构自振频率较低; 车辆气动力受轨道位置的影响较大, 钢桁方案迎风侧车辆阻力系数约为钢箱桁方案的2.2倍; 当风速为0时, 桥梁、车辆的动力响应总体上是随车速的增大而增大, 在同一车速下, 钢桁方案的桥梁位移较钢箱桁方案大, 主要是由于钢桁方案的桥梁整体刚度略弱于钢箱桁方案; 当考虑风速影响时, 桥梁的横向响应随风速的增大而显著增大; 车辆位于迎风侧, 风速为25m·s-1时, 钢箱桁方案和钢桁方案的桥梁横向位移约分别为风速为15m·s-1时的位移的2.4倍和3.8倍, 横风对桥梁的横向响应起主导作用; 同一风速时钢桁方案的桥梁响应总体上较钢箱桁方案大; 同一方案时车辆响应随风速的增大而增大, 当风速达到25m·s-1时, 车辆动力响应显著增加, 相比15m·s-1时最大增加幅度为71.6%。

关 键 词:桥梁工程    风-车-桥系统    耦合振动    三线合一、三塔悬索桥    不同断面形式    风荷载
收稿时间:2015-07-08

Comparison of wind-vehicle-bridge coupling vibration characteristics for three-line three-tower suspension bridge
LI Yong-le,XU Xin-yu,YAN Nai-jie,DENG Jiang-tao,XIANG Huo-yue.Comparison of wind-vehicle-bridge coupling vibration characteristics for three-line three-tower suspension bridge[J].Journal of Traffic and Transportation Engineering,2015,15(6):17-25.
Authors:LI Yong-le  XU Xin-yu  YAN Nai-jie  DENG Jiang-tao  XIANG Huo-yue
Institution:School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Abstract:Taking the two design schemes(steel-box-truss and steel-truss schemes)of a three-line three-tower suspension bridge as the research object, the three-component coefficients of forces for vehicle and bridge were obtained by the wind tunnel tests of vehicle-bridge system section model.Based on the spatial dynamics model of wind-vehicle-bridge(WVB)system, the dynamic characteristics of bridge and the coupling vibration characteristics of WVB system were analyzed by using the self-developed software BANSYS. Analysis result indicates that the natural frequencies of three-line three-tower suspension bridge are comparatively low.The aerodynamic characteristics of vehicle were greatly affected by track position, and the drag coefficient of windward vehicle for the steel-truss scheme is about 2.2 times that for the steel-box-truss scheme.When wind speed is 0, the dynamic responses of bridge and vehicle increase with the increase of vehicle speed.The displacements of bridge for the steel-truss scheme are bigger than those for the steel-box-truss scheme at the same vehicle speed, which is resulted from the weaker whole stiffness for the steel-truss scheme.When wind speed is considered, the lateral responsesof bridge greatly increase with wind speed increasing.When vehicle is running on the windward side and wind speed increases from 15m·s-1 to 25m·s-1, the lateral displacements of bridge for the steel-box-truss and steel-truss schemes enlarge to approximate 2.4 times and 3.8 times respectively, and crosswind is dominant to the lateral responses of bridge.On the whole, the bridge responses for the steel-truss scheme are larger than those for the steel-box-truss scheme under the same wind speed.As for the same scheme, vehicle responses increase with wind speed increasing.When wind speed reaches 25 m·s-1, the dynamic responses remarkably increase, and the maximum response index increases by 71.6% compared with that at the wind speed of 15m·s-1.
Keywords:bridge engineering  WVB system  coupling vibration  three-line three-tower suspension bridge  different section form  wind load
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号