首页 | 本学科首页   官方微博 | 高级检索  
     

利用粒子群优化算法进行桥梁维修管理计划的优化
引用本文:王桂萱,肖素兵,中村秀明. 利用粒子群优化算法进行桥梁维修管理计划的优化[J]. 公路交通科技, 2007, 24(7): 64-69
作者姓名:王桂萱  肖素兵  中村秀明
作者单位:1. 大连大学,土木工程技术研究与开发中心,辽宁,大连,116622
2. 山口大学,知能情报系,日本,山口县宇部市,755-8611
基金项目:日本文部科学省科学研究费资助项目(10450169)
摘    要:制定桥梁维修管理计划是一项非常繁杂的工程优化难题,使用常用的优化算法很难取得满意的结果。利用耐荷性和耐久性作为桥梁的健康指数,考虑维修方案和维修费用的问题,用费用最小化和品质最大化2种方案建立了桥梁维修管理的优化模型。探讨利用粒子群优化算法(PSO)求最优桥梁维修管理计划的解的可能性,并与作者开发系统中的遗传算法(SGA)和免疫遗传算法(IA)进行了比较,运用多样度的概念说明了粒子群优化算法(PSO)在解决这类问题的先进性。结果表明,粒子群优化算法(PSO)对于桥梁维修管理计划的优化是一种普适高效的算法;而且,考虑维修的管理期间越长,应用粒子群优化算法求解问题收敛性与其他2种方法相比显得更好,得到准最优解的频率也更高。

关 键 词:桥梁工程  离子群优化算法  维修管理计划  多样度
文章编号:1002-0268(2007)07-0064-06
修稿时间:2006-07-13

Optimization of Maintenance Planning for Existing Bridge Using PSO
WANG Gui-xuan,XIAO Su-bing,Hideaki Nakamura. Optimization of Maintenance Planning for Existing Bridge Using PSO[J]. Journal of Highway and Transportation Research and Development, 2007, 24(7): 64-69
Authors:WANG Gui-xuan  XIAO Su-bing  Hideaki Nakamura
Affiliation:1. Department of Civil and Architectural Engineering, Dalian university, Liaoning Dalian 116622, China; 2. Department of Computer and Systems Engineering, Yamaguchi University, Ube Yamaguchi 755-8611, Japan
Abstract:How to draw up a plan of bridge maintenance management is a very complicated optimization problem.It is very difficult to achieve satisfactory results using usual optimization algorithm.An optimum model for bridge maintenance planning considering both maintenance cost minimization and quality maximization is established by adopting load-carrying capability and durability as the bridge rating indices.The optimum possibility by using Particle Swarm Optimization(PSO) is discussed and compared with Simple Genetic Algorithms(SGA) and Immune Algorithms(IA).It is illuminated that PSO is an advanced method in solving this problem by using concept of diversity.It is found that PSO is a widely applicable and effective method for bridge maintenance planning.At the same time,relative to the other methods,the longer the maintenance period become,the better the reliability of the solution using PSO is and more easily the optimum solution can be found.
Keywords:bridge engineering  particle swarm optimization(PSO)  maintenance planning  diversity
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号