首页 | 本学科首页   官方微博 | 高级检索  
     

无人驾驶条件下共享停车匹配模型及算法
引用本文:何胜学,马思涵,程朝中,崔允汀,郁奇凡. 无人驾驶条件下共享停车匹配模型及算法[J]. 交通运输系统工程与信息, 2021, 21(4): 99-105. DOI: 10.16097/j.cnki.1009-6744.2021.04.012
作者姓名:何胜学  马思涵  程朝中  崔允汀  郁奇凡
作者单位:上海理工大学,管理学院,上海 200093
基金项目:国家自然科学基金;上海市自然科学基金
摘    要:针对如何减少无人驾驶车辆在泊车过程中不必要的频繁移位和因此增高的事故风险,构建了在满足合理共享停车需求条件下最小化无人车移位成本的共享停车供需匹配优化模型,并利用解的结构特征设计了一种具有针对性的模拟退火求解算法.鉴于无人车灵活变换泊位的特征,将泊车需求与泊位供给在时间上加以分割,从而使得基于分割时段的匹配模型可以反映...

关 键 词:智能交通  共享停车  模拟退火算法  无人驾驶车辆  二次分配
收稿时间:2021-02-03

Shared Parking Supply-demand Matching Model and Algorithm with Autonomous Vehicles
HE Sheng-xue,MA Si-han,CHENG Chao-zhong,CUI Yun-ting,YU Qi-fan. Shared Parking Supply-demand Matching Model and Algorithm with Autonomous Vehicles[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 99-105. DOI: 10.16097/j.cnki.1009-6744.2021.04.012
Authors:HE Sheng-xue  MA Si-han  CHENG Chao-zhong  CUI Yun-ting  YU Qi-fan
Affiliation:Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:In order to reduce the unnecessary translocations and the incurred accident risk during the parking ofautonomous vehicles, this paper formulated a shared parking supply-demand matching optimization model withsatisfying the acceptable parking demand as its constraints and minimizing the cost of translocation of autonomousvehicles as its objective. Based on the structural property of the feasible solution, this paper designed a simulatedannealing algorithm to solve the proposed model. Since autonomous vehicles can change the parking spaces freely, thepaper divided the parking demand and the shared parking supply into small segments to make the model to reflect thefeature of autonomous vehicles. Combining the matching sets with the time segments can form a matching mapcorresponding to a specified feasible solution of the matching model. By making use of the structural feature ofmatching maps, this paper defined the neighborhood of a matching map associated with a given time segment and thenfinished the design of the critical operations of the simulated annealing algorithm. The results show that: (a) the newmethod can realize the shared parking supply-demand matching with autonomous vehicles; (b) the number oftranslocations of autonomous vehicles can decreases to less than 5% of the initial value after optimizing; and (c) ingeneral, the optimal matching map is not unique, which provides other parking requirements with operation possibility.
Keywords:intelligent transportation   parking space sharing   simulated annealing algorithm   autonomous vehicle  quadratic assignment  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号