首页 | 本学科首页   官方微博 | 高级检索  
     

基于互信息贝叶斯网络的交通事故严重程度分析
引用本文:吕通通, 张湛, 陆林军, 张延猛. 基于互信息贝叶斯网络的交通事故严重程度分析[J]. 交通信息与安全, 2021, 39(6): 36-43. doi: 10.3963/j.jssn.1674-4861.2021.06.005
作者姓名:吕通通  张湛  陆林军  张延猛
作者单位:上海交通大学船舶海洋与建筑工程学院 上海 200240
基金项目:国家自然科学基金项目51508325
摘    要:为掌握省际客运行业事故严重程度影响因素, 采用互信息及贝叶斯网络方法构建模型, 分析各因素变化与事故严重程度的定量互动关系。鉴于行业样本量较小及专家知识建模存在主观性, 采用改进离散算法挖掘数据, 提出结合互信息与交叉验证的先验网络构造方法。以上海市2005—2019年741起省际客运事故数据为例进行模型分析。结果表明: 对事故最敏感的影响因素为驾驶员性别、天气和车辆类型; 其中“女性驾驶员”“雪、大风、雾”“中型客车”对事故严重性的权重占比分别为13.5%, 8.8%和5.7%;此外, 驾驶员年龄对群死群伤事故贡献较小; 客车尺寸与安全性非单调关系; 00:00—05:00引发7人以上受伤的概率同比上升9%;季节、天气、时间因素与财产损失无直接关联。模型泛化能力优于对比模型, AUC均值为0.644 588, 命中率达到97.3%。

关 键 词:交通安全   省际客运   事故分析   贝叶斯网络   互信息
收稿时间:2021-08-30
本文献已被 万方数据 等数据库收录!
点击此处可从《交通信息与安全》浏览原始摘要信息
点击此处可从《交通信息与安全》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号