首页 | 本学科首页   官方微博 | 高级检索  
     

开阔水域多物标动态自适应智能航行方法
引用本文:贺益雄, 梁宇, 熊勇, 牟军敏, 李梦霞, 张可. 开阔水域多物标动态自适应智能航行方法[J]. 交通运输工程学报, 2021, 21(5): 297-308. doi: 10.19818/j.cnki.1671-1637.2021.05.025
作者姓名:贺益雄  梁宇  熊勇  牟军敏  李梦霞  张可
作者单位:1.武汉理工大学 航运学院,湖北 武汉 430063;;2.武汉理工大学 内河航运技术湖北省重点实验室,湖北 武汉 430063
基金项目:国家重点研发计划项目2019YFB1600603国家自然科学基金项目52071249江苏省交通科技重大专项2018Z01
摘    要:考虑船舶操纵特性、《1972年国际海上避碰规则》和良好船艺要求,提出了动态自适应目标船不协调避碰行动的开阔水域智能航行方法;将物标分类、建模并构建数字孪生交通环境,结合航向控制方法、操纵运动和复航模型构建了自动航行模型,推演了船舶非线性操纵运动;基于自动航行模型量化解析了《规则》要求,探究动态避碰机理,建立了可行航向求取方法;在多目标环境中,提出了目标船机动判别方法,研究了《规则》约束下构成自主航行方案的改向时机、幅度和复航时机等要素求取方法。仿真结果表明:依靠信息秒级更新的滚动计算,提出的智能航行方法可自适应剩余误差和目标船随机运动;提出的智能航行方法能将可行航向区间和改向幅度精确到1°;将程序运行和复航时机计算步长设置为1、10 s,设置多类静态物标和6艘保向保速目标船,在640、1 053、2 561和3 489 s,本船进行右转9°、复航、保向保速和复航等操纵可让请所有目标并自主航行至终点;设置目标船在300 s采取不协调转向避让行动,本船在980、2 790、3 622、5 470 s时进行右转9°、左转12°、右转17°和复航等操纵可让请所有目标并自主航行至终点。可见,任意初始状态下的船舶均可沿计划航线自动航行至终点,提出的方法能满足多个、多类动静态物标共存的真实开阔水域环境中的智能航行需要。

关 键 词:交通信息   物标分类   数字孪生交通环境   复航方法   避碰机理   自动避碰   自主航行
收稿时间:2021-05-12

Dynamic adaptive intelligent navigation method for multi-object situation in open water
HE Yi-xiong, LIANG Yu, XIONG Yong, MOU Jun-min, LI Meng-xia, ZHANG Ke. Dynamic adaptive intelligent navigation method for multi-object situation in open water[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 297-308. doi: 10.19818/j.cnki.1671-1637.2021.05.025
Authors:HE Yi-xiong  LIANG Yu  XIONG Yong  MOU Jun-min  LI Meng-xia  ZHANG Ke
Affiliation:1. School of Navigation, Wuhan University of Technology, Wuhan 430063, Hubei, China;;2. Hubei Key Laboratory of Inland Shipping Technology, Wuhan University of Technology, Wuhan 430063, Hubei, China
Abstract:An intelligent navigation method of dynamic adaptive target ship collision avoidance action in open water was proposed considering the ship maneuvering characteristics, the requirements of International Regulations for Preventing Collisions at Sea 1972 and good seamanship. The digital twin traffic environment was constructed by classifying and modeling objects. An automatic navigation model was developed by combination of course control method, ship maneuvering motion and sailing resuming model, and ship's nonlinear maneuvering motion was deduced. The requirements of International Regulations for Preventing Collisions at Sea 1972 were quantitatively analyzed based on the automatic navigation model, and the dynamic collision avoidance mechanism was studied. The method to calculate applicable course was established. In the multi-target environment, the maneuvering discrimination method of target ship was proposed. The method to obtain the factors such as the course changing time, amplitude and sailing resuming time which constitute the autonomous navigation scheme under the constraint of rules was studied. Simulation results show that the intelligent navigation method can adapt to the residual error and random motion of the target ships based on the rolling calculations of the information update at the second-level. The proposed intelligent navigation method can accurately achieve the feasible course range and course change amplitude of 1°. The calculation step lengths of program and sailing resumption time are set to 1 and 10 s, respectively, and multiple static objects and six target ships maintaining the course and speed are established in this simulation environment. Own ship remains clear from all targets and sails autonomously to the destination after a series of maneuverings of 9° to starboard, sailing resuming, keeping course and speed, sailing resuming at 640, 1 053, 2 561 and 3 489 s, respectively. Target ships are set to perform uncoordinated collision avoidance actions at 300 s, and own ship remains clear from all targets and sails autonomously to the destination after a series of maneuverings of 9° to starboard, 12° to port, 17° to starboard, and sailing resuming at 980, 2 790, 3 622 and 5 470 s, respectively. Therefore, a ship in any initial states can automatically sail along a planned route to its destination. The proposed method is suitable for intelligent navigation in actual open sea areas with multiple and multiple dynamic and static objects. 5 tabs, 13 figs, 30 refs. 
Keywords:transportation information  object classification  digital twin traffic environment  sailing resuming method  collision avoidance mechanism  automatic collision avoidance  autonomous navigation
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号