首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Autonomous cars: The tension between occupant experience and intersection capacity
Institution:1. Department of Civil, Environmental, and Geo- Engineering, 500 Pillsbury Drive S.E., Minneapolis, MN 55455-0116, United States;2. Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St. Stop C1761, Austin 78712-1172, TX, United States
Abstract:Systems that enable high levels of vehicle-automation are now beginning to enter the commercial marketplace. Road vehicles capable of operating independently of real-time human control under an increasing set of circumstances will likely become more widely available in the near future. Such vehicles are expected to bring a variety of benefits. Two such anticipated advantages (relative to human-driver vehicle control) are said to be increased road network capacity and the freeing up of the driver-occupant’s time to engage in their choice of leisurely or economically-productive (non-driving) tasks.In this study we investigate the implications for intersection capacity and level-of-service of providing occupants of automated (without real-time human control), autonomously-operating (without vehicle-to-X communication) cars with ride quality that is equivalent (in terms of maximum rates of longitudinal and lateral acceleration) to two types of rail systems: urban] light rail transit and inter-urban] high-speed rail. The literature suggests that car passengers start experiencing discomfort at lower rates of acceleration than car drivers; it is therefore plausible that occupants of an autonomously-operating vehicle may wish to instruct their vehicle to maneuver in a way that provides them greater ride comfort than if the vehicle-control algorithm simply mimicked human-driving-operation.On the basis of traffic microsimulation analysis, we found that restricting the dynamics of autonomous cars to the acceleration/deceleration characteristics of both rail systems leads to reductions in a signalized intersection’s vehicle-processing capacity and increases in delay. The impacts were found to be larger when constraining the autonomous cars’ dynamics to the more-restrictive acceleration/deceleration profile of high-speed rail. The scenarios we analyzed must be viewed as boundary conditions, because autonomous cars’ dynamics were by definition never allowed to exceed the acceleration/deceleration constraints of the rail systems. Appropriate evidence regarding motorists’ preferences does not exist at present; establishing these preferences is an important item for the future research agenda.This paper concludes with a brief discussion of research needs to advance this line of inquiry.
Keywords:Autonomous car  Occupant experience  Productive use of travel time  Road capacity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号