首页 | 本学科首页   官方微博 | 高级检索  
     

不确定条件下内河航道通航环境风险评价
引用本文:邱文钦,唐存宝,唐强荣. 不确定条件下内河航道通航环境风险评价[J]. 中国航海, 2019, 0(1): 52-55,67
作者姓名:邱文钦  唐存宝  唐强荣
作者单位:广州航海学院海运学院
基金项目:广东省交通运输厅科技计划项目(2012-02-045)
摘    要:在船舶大型化趋势明显,船舶交通量迅猛增长的背景下,如何保障船舶进港航道通航环境,确保船舶安全、有效进港成为众多研究关注的焦点。结合高斯混合聚类模型(Gaussian Mixture Model, GMM)和概率神经网络(Probabilistic Neural Network, PNN)的特点,构建在不确定条件下的基于GMM-PNN模型的内河航道通航环境风险评价模型。案例分析表明:所提出的模型具有较强的应用性和普适性,能够为有关部门实施现代化海事监管提供夯实的理论基础。

关 键 词:通航环境  高斯混合聚类  概率神经网络  风险评价  不确定性

Navigation Environment Risk Assessment of Uncertain Inland Waterway
QIU Wenqin,TANG Cunbao,TANG Qiangrong. Navigation Environment Risk Assessment of Uncertain Inland Waterway[J]. Navigation of China, 2019, 0(1): 52-55,67
Authors:QIU Wenqin  TANG Cunbao  TANG Qiangrong
Affiliation:(Navigation Department,Guangzhou Maritime Institute, Guangzhou 510725, China)
Abstract:Navigation safety problems are arising with the rapid development of big-sized ships and serious traffic jam in inland waterways. Based on GMM-PNN(Gaussian Mixture Model and Probabilistic Neural Network), a model of navigation environment risk assessment of uncertain inland waterway is analyzed. Case studies indicate that the proposed model is practical and applicable, providing a theoretical reference to modern inland waterway supervision. Case studies indicate that the proposed model is practical and generally applicable.
Keywords:navigation environment  GMM  PNN  risk assessment  uncertainty
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号