首页 | 本学科首页   官方微博 | 高级检索  
     

出租车超速行为道路因素随机系数空间模型构建
引用本文:刘海玥,蒋朝哲,付川云,周悦. 出租车超速行为道路因素随机系数空间模型构建[J]. 交通运输系统工程与信息, 2022, 22(3): 140-146. DOI: 10.16097/j.cnki.1009-6744.2022.03.016
作者姓名:刘海玥  蒋朝哲  付川云  周悦
作者单位:1. 西南交通大学,交通运输与物流学院,成都 611756;2. 哈尔滨工业大学,交通科学与工程学院,哈尔滨 150090
基金项目:国家自然科学基金;中央高校基本科研业务费专项资金
摘    要:为准确揭示道路因素与路段出租车超速行为特征的关联关系,本文以成都市中心城区主干道路段为研究单元,通过车载GPS设备获取大范围出租车超速行为样本。在筛选出10类典型城市道路特征的基础上,选择路段超速线密度和不同百分位数超速严重度作为研究对象;为减少空间效应对估计的干扰,本文验证了超速特征的空间相关性,并分别构建基于对数-高斯分布的标准线性模型和空间条件自回归模型、空间误差模型及空间滞后模型这3类空间模型,探究不同空间模型与出租车超速行为特征的拟合情况;同时,考虑道路组间异质性,进一步构建随机系数空间模型。结果表明:出租车路段超速线密度和超速严重度均存在显著空间自相关性,空间模型对其拟合效果普遍优于传统模型;不同超速行为特征适用不同的空间模型,随机系数空间条件自回归模型对超速线密度拟合效果最优,而不同百分位数超速严重度适用的最佳拟合模型差异较大;路段限速、一块板横断面及非机动车车道这3类因素表现出对出租车超速行为特征的组间影响异质性;因素解释方面,路段限速、一块板横断面、非机动车车道、路段施工区与超速线密度显著相关;路段限速、非机动车车道、上下坡匝道、路段施工区及路段长度与超速严重度显著相关。

关 键 词:交通工程  道路因素  组间随机系数空间模型  超速行为  空间条件自回归模型  空间同步自回归模型  
收稿时间:2022-02-21

Group-level Random Parameter Spatial Modeling forRoad Factors of Taxi Speeding Behavior
LIU Hai-yue,JIANG Chao-zhe,FU Chuan-yun,ZHOU Yue. Group-level Random Parameter Spatial Modeling forRoad Factors of Taxi Speeding Behavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 140-146. DOI: 10.16097/j.cnki.1009-6744.2022.03.016
Authors:LIU Hai-yue  JIANG Chao-zhe  FU Chuan-yun  ZHOU Yue
Affiliation:1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China;2. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
Abstract:To thoroughly disclose the relationship between taxi speeding behaviors and road characteristics at segmentlevel, this study extracted large-scale taxi speeding behaviors from GPS trajectories collected in downtown Chengdu.The characteristics of speeding behaviors consist of speeding linear density (SLD) and speeding severity (SR) aresorted in different percentiles. Ten types of road characteristics were selected as underlying contributing factors. Torestrict the interference of spatial effects, this study examined the spatial correlation among the characteristics ofspeeding behaviors and developed three types of spatial models. The models include spatial intrinsic conditionalautoregressive model (ICAR), spatial error model (SEM), and spatial lag model (SLM), which are based on the Lognormal prior to the response variables (e.g., SLD and SR). In addition to the spatial correlation, the models wereextended to be incorporated with random parameters to capture the unobserved heterogeneity among roadways. Theresults indicate that the spatial models outperform the traditional model with better goodness-of-fit since all thespeeding characteristics are observed with severe spatial correlation. We also found the performance of a certain modelvaries across the type of response variables. In detail, random parameter ICAR model outperforms others on modelingSLD, while SRs on various percentiles are best fitted by different spatial models. The factors of speed limit, roadwaycross-section, and non-motorized vehicle lane have heterogenous effects on the speeding characteristics. The estimatesalso indicate that the speed limit, roads without divider, non-motorized vehicle lane, and work zone are significantlyassociated with SLD. Speed limit, non-motorized vehicle lane, overpass or road tunnel, work zone, and road length aresignificantly related to SR.
Keywords:traffic engineering,road characteristics,group-level random parameter spatial model,speeding behavior  intrinsic conditional autoregressive model,spatial simultaneous autoregressive mode,
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号