首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析-云模型的黄土隧道施工稳定性评估
引用本文:赵岩. 基于主成分分析-云模型的黄土隧道施工稳定性评估[J]. 隧道建设, 2022, 42(9): 1529-1536. DOI: 10.3973/j.issn.2096-4498.2022.09.004
作者姓名:赵岩
作者单位:(中铁十八局集团第五工程有限公司, 天津 300450)
摘    要:黄土隧道极易发生大变形和塌方等灾害,为准确、高效地识别其施工中的稳定性,针对其稳定性评估具有随机性和模糊性共存的特点,选取同一施工条件下黄土含水率、干密度、孔隙比、黏聚力和内摩擦角等5个物理力学参数作为稳定性评估指标。采用主成分分析法获得各指标权重,结果显示含水率、黏聚力和内摩擦角3个指标对黄土隧道稳定性影响较大;通过各指标分级标准计算获得云模型的数字特征;结合各指标权重与云模型的数字特征,通过正向云发生器,构建基于主成分分析和正态云理论的黄土隧道施工稳定性评估模型。将该评估模型应用于蒙华铁路延安段黄土隧道,预测准确率高达90%,优于Critic-云模型,验证了该模型的可行性和有效性。

关 键 词:黄土隧道   稳定性评估   主成分分析   云模型  

Stability Evaluation of Loess Tunnel duringConstruction Based on Principal Component Analysis CloudModel
ZHAO Yan. Stability Evaluation of Loess Tunnel duringConstruction Based on Principal Component Analysis CloudModel[J]. Tunnel Construction, 2022, 42(9): 1529-1536. DOI: 10.3973/j.issn.2096-4498.2022.09.004
Authors:ZHAO Yan
Affiliation:(China Railway 18 Bureau Group Fifth Engineering Co.,Ltd., Tianjin 300450, China)
Abstract:Loess tunnels are prone to large deformation andcollapse. Accordingly, to assess the stability of loess tunnels accurately andefficiently in construction, five physical and mechanical parameters of loess,such as water content, dry density, void ratio, cohesion, and internal frictionangle, are selected as stability predictors under the same constructioncondition when considering the coexistence of randomness and ambiguity instability assessment. Furthermore, based on principal component analysis, theweights of predictors are obtained, showing that water content, cohesion, andinternal friction angle affect the stability of loess significantly. Then, thecharacteristics of the cloud model are obtained through the grading standard ofpredictors. Finally, based on the weights and characteristics of the cloudmodel, the stability evaluation model of a loess tunnel during construction basedon principal component analysis and normal cloud theory is constructed usingthe forward cloud generator. The proposed evaluation model was applied to theloess tunnel of the Yan′an section of the Menghua railway. The predictionaccuracy rate is as high as 90%, which is better than that of the Critic cloud model, thereby validating the feasibility and effectiveness ofthe proposed model.
Keywords:loess tunnel   stability assessment   principal component analysis   cloud model  
点击此处可从《隧道建设》浏览原始摘要信息
点击此处可从《隧道建设》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号