首页 | 本学科首页   官方微博 | 高级检索  
     

考虑驾驶风格差异的高原公路危险路段识别研究
引用本文:朱兴林,姚亮,刘泓君,叶拉森∙库肯,艾力∙斯木吐拉. 考虑驾驶风格差异的高原公路危险路段识别研究[J]. 交通运输系统工程与信息, 2022, 22(6): 172-182. DOI: 10.16097/j.cnki.1009-6744.2022.06.018
作者姓名:朱兴林  姚亮  刘泓君  叶拉森∙库肯  艾力∙斯木吐拉
作者单位:新疆农业大学,交通与物流工程学院,乌鲁木齐 830052
基金项目:国家自然科学基金(71761032);西部地方高校校企联合全日制交通运输专业学位研究生培养模式创新研究(2020MSA274);新疆维吾尔自治区研究生科研创新项目(XJ2021G165)。
摘    要:针对高原环境中驾驶人风格、生理变化与危险路段特征之间的潜在关联,提出一种基于驾驶状态的危险路段识别方法,辨识和分析不同风格驾驶人具有潜在风险的路段,并提出优化方案。首先,通过实车实验采集驾驶人行为及生理指标数据,使用DBSCAN(Density Based SpatialClustering of Applications with Noise)得出驾驶风格类型,并依据行为特征对驾驶风格进行差异性分析;其次,采用卷积神经网络、双向长短时记忆神经网络与注意力机制搭建危险状态识别模型,通过GPS(Global Positioning System)点位对应实现危险路段辨识,并基于驾驶风格差异,从驾驶人感知、操纵与生理角度对危险路段进行致因分析;最后,将生理与道路线形作为优化参考,以车速建议为着力点进行多元回归分析,并按照生理舒适域确定车速建议区间。结果表明:驾驶人根据行为特点分为谨慎、稳健和激进型,3类驾驶人在上行和下行途中的危险路段多为具有弯坡特征的组合型路段;海拔提升可加速危险驾驶状态的出现,各类驾驶人在上行时的紧张状态多源于弯坡组合值和转角值的增长,激进型驾驶人在坡度大于6%的直纵坡路段时亦会开始高度紧张;下行时,谨慎与激进型驾驶人在直纵坡坡度大于3%时易出现危险状态,激进型驾驶人在转角值大于80°且弯坡组合值大于50时亦存在驾驶风险。研究成果可满足高原公路人因事故预防的需求,为线形设计与交通管理措施制定提供理论依据。

关 键 词:交通工程  危险路段识别  深度学习  驾驶状态  行车安全  驾驶风格  
收稿时间:2022-07-05

Identification of Dangerous Sections of Highland RoadsConsidering Different Driving Behaviors
ZHU Xing-lin,YAO Liang,LIU Hong-jun,ERASEL·Kuken,ELI·Ismutulla. Identification of Dangerous Sections of Highland RoadsConsidering Different Driving Behaviors[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 172-182. DOI: 10.16097/j.cnki.1009-6744.2022.06.018
Authors:ZHU Xing-lin  YAO Liang  LIU Hong-jun  ERASEL·Kuken  ELI·Ismutulla
Affiliation:College of Transportation & Logistics Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
Abstract:Considering the potential correlation between driver behavior, physiological changes and hazardous roadfeatures on the highland roadway, this paper proposes a method to identify hazardous road sections based on drivingstatus. First, the driver's behavior and physiological data were collected through the real vehicle test, and the drivingbehavior data was obtained through Density Based Spatial Clustering of Applications with Noise. The driving behaviorwas classified into different groups based on the behavior characteristics. Then, a hazard recognition model wasdeveloped using convolutional neural network, the Bidirectional Long and Short-Term Memory neural network, andAttention mechanism. The identification of hazardous road sections was realized by (Global Positioning System) GPSpoint correspondence. The causative analysis of hazardous road sections was performed in consideration of driverperception, manipulation, and physiology based on different driving behaviors. Physiological indicators and linearparameters were considered as optimization factors, and multiple regression analysis was performed with vehicle speedas the dependent variable, and the recommended interval of vehicle speed was determined based on the safety domain values of physiological indicators. The results show that drivers can be classified as cautious, steady, andaggressive based on the behavioral characteristics, and the dangerous sections for the three types of drivers aremostly combined sections with curved slopes. The distribution of the dangerous sections closely related to the drivingbehaviors. The increase in altitude can accelerate the emergence of dangerous driving states. Drivers became nervouswhen driving up mostly due to the increase in the combination of the curved slope and the turning degree. Aggressivedrivers become highly tense when drive on straight and longitudinal slopes with a slope greater than 6% . Whendescending, cautious and aggressive drivers are likely to be in a dangerous state when the gradient of straight andvertical slopes is greater than 3%. Aggressive drivers also have driving risks when the turning degree is greater than80° and the combined value of the curved slope is greater than 50. The research results provides references for humanaccident prevention on plateau highways, roadway geometric design, and traffic management measures.
Keywords:traffic engineering   dangerous road section identification   deep learning   driving status   driving safety  driving style  
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号