首页 | 本学科首页   官方微博 | 高级检索  
     


Automobile aerodynamics influenced by airfoil-shaped rear wing
Authors:A. Buljac  I. Džijan  I. Korade  S. Krizmanić  H. Kozmar
Affiliation:1.Faculty of Mechanical Engineering and Naval Architecture,University of Zagreb,Zagreb,Croatia
Abstract:Computational model is developed to analyze aerodynamic loads and flow characteristics for an automobile, when the rear wing is placed above the trunk of the vehicle. The focus is on effects of the rear wing height that is investigated in four different positions. The relative wind incidence angle of the rear wing is equal in all configurations. Hence, the discrepancies in the results are only due to an influence of the rear wing position. Computations are performed by using the Reynolds-averaged Navier-Stokes equations along with the standard k-ε turbulence model and standard wall functions assuming the steady viscous fluid flow. While the lift force is positive (upforce) for the automobile without the rear wing, negative lift force (downforce) is obtained for all configurations with the rear wing in place. At the same time, the rear wing increases the automobile drag that is not favorable with respect to the automobile fuel consumption. However, this drawback is not that significant, as the rear wing considerably benefits the automobile traction and stability. An optimal automobile downforce-to-drag ratio is obtained for the rear wing placed at 39 % of the height between the upper surface of the automobile trunk and the automobile roof. Two characteristic large vortices develop in the automobile wake in configuration without the rear wing. They vanish with the rear wing placed close to the trunk, while they gradually restore with an increase in the wing mounting height.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号