首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Closed-Loop Directional Stability of Car-Trailer Combinations in Straight-Line Motion
Authors:S Tousi  AK Bajaj  W Soedel
Institution:  a Currently with Delco Electronics, Kokomo, Indiana b School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
Abstract:This work focuses on the interaction between a driver and a car-trailer combination. A model characterizing human operator behavior in regulation task is employed to study directional stability of the overall system. The vehicle-trailer model retains nonlinear cornering force and other kinematic nonlinearities. Linear stability of the straight line motion is analyzed by the application of Routh-Hurwitz criteria and stability boundaries in parameter space are constructed by setting appropriate Hurwitz determinant to zero. It is shown that two types of transition in stability are possible in the driver/car-trailer system. They correspond to one pair or two pairs of complex conjugate eigenvalues crossing the imaginary axis simultaneously. The implications in terms of resulting motions for the nonlinear system are also discussed. It is shown that stabilization of the combination can be achieved by adding a passive controller at the articulation point. Articulation damper turns out to be a more useful device for controlling trailer oscillations instability although a combination of damper and torsional spring would be a more ideal solution.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号