首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习的网约车合乘出行碳减排状态预测
引用本文:李文翔,李媛媛,刘好德,宜毛毛,韩印. 基于机器学习的网约车合乘出行碳减排状态预测[J]. 交通运输系统工程与信息, 2023, 23(1): 254-264. DOI: 10.16097/j.cnki.1009-6744.2023.01.027
作者姓名:李文翔  李媛媛  刘好德  宜毛毛  韩印
作者单位:1. 上海理工大学,管理学院,上海 200093;2. 交通运输部科学研究院,北京 100029;3. 城市公共交通智能化交通运输行业重点实验室,北京 100029
基金项目:国家自然科学基金 (52002244);上海市晨光计划(20CG55);城市公共交通智能化交通运输行业重点实验室开放课题(2021-APTS-01)
摘    要:网约车合乘出行可有效提高车辆运输效率,与常规网约车出行相比具有显著的碳减排潜力。然而,现实中网约车合乘出行能否真正减少碳排放受多方面因素影响,往往存在较大差异与不确定性。为识别碳减排潜力较大的网约车合乘订单,提出一种基于机器学习的网约车合乘出行碳减排状态预测模型,并解析其碳减排机理。首先,基于成都市真实的网约车合乘订单与轨迹数据,应用COPERT(COmputer Program to calculate Emissions from Road Transport)排放模型分别计算合乘出行碳排放量及其替代的独乘出行碳排放量,进而得到合乘出行相比独乘出行的碳减排量。然后,基于历史的合乘行程碳减排及其订单特征数据,训练XGBoost(eXtreme Gradient Boosting)模型以预测未来潜在合乘出行的碳减排状态。最后,采用ALE (Accumulated Local Effects)分析方法对预测模型进行特征变量解析,以识别影响合乘出行碳减排状态的关键因素。结果显示:研究区域内平均每次网约车合乘出行可减少碳排放307.23 g,但仍有15%的网约车合乘行程未能实现减碳;XGBo...

关 键 词:城市交通  碳减排预测  机器学习  合乘出行  网约车
收稿时间:2022-11-05

Prediction of CO2 Emission Reduction State ofRidesplitting Based on Machine Learning
LI Wen-xiang,LI Yuan-yuan,LIU Hao-de,YI Mao-mao,HAN Yin. Prediction of CO2 Emission Reduction State ofRidesplitting Based on Machine Learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 254-264. DOI: 10.16097/j.cnki.1009-6744.2023.01.027
Authors:LI Wen-xiang  LI Yuan-yuan  LIU Hao-de  YI Mao-mao  HAN Yin
Affiliation:1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. China Academy ofTransportation Sciences, Beijing 100029, China; 3. Key Laboratory of Advanced PublicTransportation Science, Beijing 100029, China
Abstract:Ridesplitting can effectively improve the transportation efficiency of vehicles and has great potential foremission reduction compared with regular ridesourcing. However, in reality, whether a ridesplitting trip reduces CO2emissions, is determined by many factors with heterogeneity and uncertainty. To identify the ridesplitting trips withgreater carbon emission reduction potential, this study proposes a machine learning-based model for predicting theCO2 emission reduction state and interpreting the CO2 emission reduction mechanism of ridesplitting. First, the CO2emissions of shared rides (ridesplitting) and their substituted single rides (regular ridesourcing) are calculated based onthe COPERT (COmputer Program to calculate Emissions from Road Transport) model using the real-world order dataand trajectory data of ridesplitting in Chengdu City. Then, the actual CO2 emission reduction of each ridesplitting tripcompared with regular ridesourcing trips is quantified. Given the CO2 emission reduction and order attributes of ridesplitting trips, the XGBoost (eXtreme Gradient Boosting) model is trained to predict the CO2 emission reductionstates of potential ridesplitting trips in the future. Finally, the ALE (Accumulated Local Effects) analysis method is usedto analyze the mechanism of the prediction model to identify the key factors influencing the CO2 emission reductionstate of ridesplitting trips. The results showed that the average CO2 emission of each ridesplitting trip is 307.23 g in thestudy area. However, there are still 15% of ridesplitting trips even increasing CO2 emissions. The XGBoost model caneffectively predict the CO2 emission reduction state of ridesplitting trips. In addition, the detour rate, the number ofshared rides, and the overlap rate are identified to be the three key factors that determine the CO2 emission reductionstate of ridesplitting trips. This study provides a theoretical basis for the ridesourcing platform to optimize the matchingalgorithms of shared rides. It can also realize more efficient and low-carbon ridesplitting and further improve theenvironmental benefits of ridesplitting.
Keywords:urban traffic   CO2 emission reduction prediction   machine learning   ridesplitting   ridesourcing  
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号