首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于卡尔曼数据平滑的分段曲线拟合室内定位算法
引用本文:朱明强,侯建军,刘颖,苏军峰. 一种基于卡尔曼数据平滑的分段曲线拟合室内定位算法[J]. 北方交通大学学报, 2012, 0(5): 95-99
作者姓名:朱明强  侯建军  刘颖  苏军峰
作者单位:北京交通大学电子信息工程学院,北京100044
基金项目:国家自然科学基金资助项目(61172130)
摘    要:室内定位技术的关键在于获取距离参数,在这一问题的研究中运用RSSI信号获得距离参数一直是比较通行的方法.本文针对室内环境复杂,接收RSSI信号存在较大噪声的情况,提出了一种运用卡尔曼滤波器对信号数据进行平滑预处理,随后利用最小二乘法进行分段曲线拟合从而实现定位的算法.通过实验测试结果表明,本文所提出的算法平均定位精度可达0.9 m,与普通数据平均值预处理算法和曲线直接拟合方法相比较,定位精度更高;比直接应用对数距离损耗路径模型的定位算法更为合理可靠,能够在一定程度上满足无线传感器网络室内定位需求.

关 键 词:无线传感器网络  室内定位  卡尔曼滤波  分段曲线拟合

An indoor locating algorithm based on Kalman smoothing filter and piecewise curve fitting
ZHU Mingqiang,HOU Jianjun,LIU Ying,SU Junfeng. An indoor locating algorithm based on Kalman smoothing filter and piecewise curve fitting[J]. Journal of Northern Jiaotong University, 2012, 0(5): 95-99
Authors:ZHU Mingqiang  HOU Jianjun  LIU Ying  SU Junfeng
Affiliation:(School of Electronics and Information Engineering,Beijing Jiaotong University,Beijing 100044,China)
Abstract:The key of Indoor positioning technology is to get the distance parameter.Nowdays,using the RSSI signal to obtain the distance parameter in the study of this issue is a general approach.Considering the complexity of the indoor environment and a large noise in the RSSI signal,an Indoor locating algorithm based on Kalman smoothing filter and piecewise curve fitting is proposed.The experimental result indicated that the accuracy of 0.9m is obtained with the proposed algorithm,and it has higher accuracy of indoor positioning than general data preprocessing and curve fitting directly.Also,it can be more reasonable and reliable compared with the log-distance path loss model.It would be able to meet the needs of indoor positioning in wireless sensor networks.
Keywords:wireless sensor networks  indoor positioning  Kalman filter  piecewise curve fitting
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号