首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于多学科协同分析的轨道车辆制动系统集成化仿真平台
引用本文:朱文良,吴萌岭,田春,左建勇.基于多学科协同分析的轨道车辆制动系统集成化仿真平台[J].交通运输工程学报,2017,17(3):99-110.
作者姓名:朱文良  吴萌岭  田春  左建勇
作者单位:同济大学 铁道与城市轨道交通研究院, 上海 201804
基金项目:国家自然科学基金项目U1534205 国家科技支撑计划项目2015BAG12B01-20
摘    要:根据轨道车辆电空复合制动的工作原理, 以全车制动系统为研究对象, 一动一拖制动控制单元为研究载体, 基于多学科协同分析方法, 建立了控制子系统、气制动子系统、电制动子系统与制动执行子系统模型, 基于各子系统之间的关联参数, 搭建了制动系统的联合仿真平台; 根据广佛二期车辆的实际参数, 模拟列车电制动失效工况下常用全制动的运行工况, 计算了空走时间、制动时间、制动距离、制动减速度、瞬时速度、平均减速度、纵向冲动、车钩力、利用黏着系数与制动缸压力, 并与试验结果进行了对比, 以验证集成化仿真平台的可行性和有效性。仿真和试验结果表明: 在制动稳定后, 仿真和试验的列车制动减速度约为1.25m·s-2, 仿真的平均减速度约为1.05m·s-2, 试验的平均减速度约为1.09m·s-2, 误差较小, 且均符合常用全制动的平均减速度不小于1.0m·s-2的要求; 在常用全制动工况下, 采取等磨耗制动力分配的动、拖车利用黏着系数不同, 动车约为0.13, 拖车约为0.12, 但都未超过0.16的最大可利用黏着系数的限制; 虽然动、拖车的质量不同, 但等磨耗工况下施加常用全纯空气制动后, 试验和仿真的动、拖车的制动缸压力均相等, 约为420kPa。由此可见, 可利用基于多学科协同分析的联合仿真平台对轨道车辆制动系统进行车辆级的研究, 为制动系统的开发和设计优化提供理论依据。

关 键 词:轨道车辆    制动系统    多学科协同分析    集成化仿真    制动性能
收稿时间:2017-02-05

Integrated simulation platform of braking system of rolling stock based on multi-discipline collaborative analysis
ZHU Wen-liang,WU Meng-ling,TIAN Chun,ZUO Jian-yong.Integrated simulation platform of braking system of rolling stock based on multi-discipline collaborative analysis[J].Journal of Traffic and Transportation Engineering,2017,17(3):99-110.
Authors:ZHU Wen-liang  WU Meng-ling  TIAN Chun  ZUO Jian-yong
Institution:Institute of Rail Transit, Tongji University, Shanghai 201804, China
Abstract:On the basis of the working principle of electro-pneumatic brake, the braking system of rolling stock was taken as research object, one motor car and one trailer were taken as a control unit, and the control subsystem model, air brake subsystem model, electric braking subsystem model and braking executing subsystem model were built based on multi-discipline collaborative analysis. By the correlation parameters of the subsystems, a co-simulation platform was established. The operating condition of full service braking was simulated under the failure of electric braking according to the actual parameters of second phase of Guangfo Metro, and the idling braking time, braking time, braking distance, braking deceleration, instantaneous speed, mean deceleration, longitudinal jerk, coupler force, adhesion utilization and braking cylinderpressure were calculated. The simulation and test results were compared to verify the feasibility and validity of the platform. Simulation and test results show that the braking decelerations of train in simulation and test are about 1.25 m·s-2 after braking process is steady, the mean braking deceleration in simulation is about 1.05 m·s-2, the decelerate in test is about 1.09 m·s-2, all of them meet the requirement that the mean braking deceleration of full service braking is more than 1.0 m·s-2, and the simulation error is lesser. In full service braking, the adhesion utilizations are different under the equivalent wear braking force distribution strategy, it is 0.13 for motor car and 0.12 for tailor, but both of them are less than the adhesion limited 0.16. Although the qualities of motor car and trailer car are different, the pressures of braking cylinders in full service braking are same under the equivalent wear strategy, and the value is about 420 kPa. In summary, the multi-discipline collaborative analysis and co-simulation platform are effective in modelling and analyzing the braking system of rolling stock, and are theoretical basis to research and develop braking system.
Keywords:rolling stock  braking system  multi-discipline analysis  integrated simulation  braking performance
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号