首页 | 本学科首页   官方微博 | 高级检索  
     

基于多分类器--并行计算的车牌识别算法
引用本文:王鑫道,陈启美,李勃. 基于多分类器--并行计算的车牌识别算法[J]. 交通与计算机, 2006, 24(2): 58-61
作者姓名:王鑫道  陈启美  李勃
作者单位:南京大学,南京,210093
摘    要:针对已有车牌识别中技术存在的不足,提出了一种多分类器——模板匹配和神经网络并行计算的识别算法,这一方法对于汉字、英文和数字混杂、数字的识别,分别采用粗分类和面向汉字的双进程计算方法、面向字母的双进程计算方法、简单的数字神经网络方法。这些方法的采用可以缩小检索范围,充分利用模板匹配和神经网络算法各自的识别优点,提高车牌字符识别准确率,并进一步提高运算速度。

关 键 词:车牌识别  字符识别  模板匹配  BP神经网络
收稿时间:2005-11-24
修稿时间:2005-11-24

Recognition Algorithm of License Plate Based on Multi-classifier and Parallel Computing
WANG Xindao,CHEN Qimei,LI Bo. Recognition Algorithm of License Plate Based on Multi-classifier and Parallel Computing[J]. Computer and Communications, 2006, 24(2): 58-61
Authors:WANG Xindao  CHEN Qimei  LI Bo
Abstract:The traditional character recognition technology has some deficiencies in the recognition of vehicle license plate. This paper introduces a new recognition algorithm with multiclassifier-template matching and parallel computing of neural networks. For the Chinese characters recognition, the coarse classification and double course computing method facing Chinese characters are used. For the recognition of mixing of English and numbers, the coarse classification and double course computing method facing letters are applied. For the number recognition, simple digital BP neural network is adopted. The methods can reduce the searching range, take full advantage of recognition merit of template matching and BP neural network algorithm, improve accuracy rate of recognition for license plate characters, and increase operation speed further.
Keywords:license plate recognition   character recognition   template matching   BP neural network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号