首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
通过动态剪切流变试验、延度试验、针入度试验及旋转黏度试验分别研究了克拉玛依70号基质沥青、SBS改性沥青、高黏沥青和玄武岩纤维高黏沥青的技术特性,分析了玄武岩纤维及高黏改性剂对沥青性能的影响效果。研究得到,各沥青动态剪切模量随温度升高逐渐减少,中温范围(20℃~45℃)内,高黏沥青和玄武岩纤维高黏沥青动态剪切模量相近,温度升高后其黏度也逐渐降低,玄武岩纤维的加入使高黏沥青的动态剪切模量小于玄武岩纤维高黏沥青;基质沥青中加入rps后,抵抗变形能力增强,温度高于40℃后高黏沥青中掺入玄武岩纤维后变形能力低于高黏沥青;高黏沥青峰值力是SBS改性沥青的1.99倍,拉伸柔量减少了42%,rps改性后的沥青低温条件下抵抗荷载能力比变形能力明显,高黏沥青掺入玄武岩纤维后抗拉能力提高,低温变形能力不强;rps改性的沥青黏度明显增大,135℃的黏度是3.836 Pa·s,是70号基质沥青的5.6倍,高温敏感性大于70号基质沥青和SBS改性沥青,玄武岩纤维的加入使高黏沥青的增黏作用进一步加强。  相似文献   

2.
为制备一种适用于超薄罩面层的高黏沥青,基于正交试验进行了高黏沥青材料组成设计及路用性能评价,结果表明:在试验范围内,影响高黏沥青25℃针入度、5℃延度及60℃动力黏度的最显著因素为增黏剂掺量,影响软化点的最主要因素为基质沥青标号,SBS掺量对高黏沥青的路用性能指标影响最小。综合考虑高黏沥青各指标变化规律与要求范围,推荐高黏沥青的两种材料组成方案:90号基质沥青+8%增黏剂+2%SBS;70号基质沥青+10%增黏剂+2%SBS。  相似文献   

3.
为减少沥青混合料施工过程中大量的能源消耗和废气排放,在传统搅拌技术中加入振动功能以降低搅拌过程所需要的温度,采用布氏旋转黏度试验探究了振动参数(振动频率和幅值)和试验温度对SBS改性沥青的降黏效果,通过沥青的基本性能指标(针入度、软化点和延度)试验揭示2种振动方式对SBS改性沥青基本性能的影响,基于标准、高温与重载车辙试验,浸水马歇尔稳定度试验和冻融劈裂试验分别分析了振动拌和对SBS改性沥青混合料高温稳定性和水稳定性的影响。试验结果表明:振动拌和可以显著降低SBS改性沥青的黏度,提高改性沥青的流动性,且随着振动参数的增大,改性沥青降黏效果越好,最大降黏率可达14%;振动降黏可等效于温度降黏,且随着温度的升高,振动效应所带来的温度等效作用越显著;振动拌和结束后SBS改性沥青可恢复其黏稠属性,故基本性能不存在负面影响;当振动频率小于40 Hz时,SBS改性沥青混合料的动稳定度、残留稳定度和抗拉强度比均随振动频率的增大而增大,表明振动拌和可提高沥青混合料的高温稳定性和水稳定性,但当振动频率为50 Hz时,沥青混合料路用性能与振动频率为30 Hz时作用效果一致,表明增大振动频率对提高沥青混合料...  相似文献   

4.
为提高排水沥青混合料的综合路用性能,选取自制高黏剂、HRM 环氧树脂为改性剂,分别与SBS改性沥青进行复合改性,制备出两种复合改性沥青;同时设置SBS改性沥青为对照组,通过沥青基本性能试验、老化试验和黏度试验,评价复合改性沥青性能的提升效果;以3种沥青为胶结料、PAC-13沥青混合料为基础级配,制备出3种排水沥青混合料,并通过强度试验、渗水性能试验、水稳定性试验和高温稳定性试验等室内试验,对排水沥青混合料的路用性能进行综合评价。结果表明,相较于SBS改性沥青,复合改性排水沥青的各项性能提升效果明显;相较于传统排水沥青混合料,两种复合改性排水沥青混合料的马歇尔稳定度分别提高了24.5%、19.1%,渗水性能分别提高了2.4%、7.8%,冻融劈裂强度比分别提升了15.3%、6.5%,动稳定度分别提高了30.2%、88.8%。  相似文献   

5.
基于复合改性技术制备了具有高黏高弹特性的SBS-PU复合改性沥青,通过沥青的常规性能试验、SHRP评价体系多应力蠕变恢复(MSCR)试验、弯曲梁流变(BBR)试验评价了其技术性能。在此基础上,以SBS-PU复合改性沥青为胶结料制备SMA-13沥青混合料,通过车辙试验、低温弯曲试验、冻融劈裂试验、汉堡车辙试验(HWTD)及间接拉伸疲劳试验测试其高温抗车辙性能、低温抗裂性能、水稳性能及抗疲劳性能,同时与市场上常见的TPS、SINOTPS、SBS及聚氨酯(PU)改性沥青混合料的技术性能进行对比。结果表明:采用复合改性技术制备的SBS-PU复合改性沥青满足高黏高弹沥青指标要求,具有较好的高低温性能及储存稳定性; 60℃黏度与弹性恢复分别达到了34 217 Pa·s和97%,分别为PU改性沥青的2倍和3倍; SBS-PU复合改性沥青的60℃黏度值高于TPS改性沥青,低于SINOTPS改性沥青,储存稳定性高于SBS、TPS、SINOTPS改性沥青,相对PU改性沥青具有优异的高黏高弹特性; SBS-PU复合改性沥青混合料的高温、低温及抗疲劳性能高于TPS改性沥青混合料,低于SINOTPS改性沥青混合料,总体上具有较好的高低温性能和抗疲劳性能,在水热耦合作用下的抗水损害能力略低于TPS改性沥青混合料,但仍满足相关技术标准。  相似文献   

6.
为了解桥面防水粘结材料的使用性能,为施工提供有效参考,采用室内拉拔试验与剪切试验分析了高黏SBS改性沥青、SBR改性乳化沥青以及环氧沥青三种桥面防水粘结材料的粘结性能、抗剪性能以及抗水损害性能。结果显示:(1)环氧沥青的粘结性能和抗剪性能最好,高黏SBS改性沥青次之,SBR改性乳化沥青最差;(2)由于环氧沥青材料组分较为复杂,且价格比较昂贵,其施工性价比可能不如高黏SBS改性沥青;(3)从冻融循环后的残留粘结强度和抗剪强度数值来看,高黏SBS改性沥青与环氧沥青的抗水损害性能均不差。  相似文献   

7.
透水性沥青路面是海绵城市特有的路面结构形式,高黏沥青作为该路面结构保持稳定路用性能的核心材料,其高温性能至关重要。将3种不同类型的高黏剂分别掺配70号基质沥青和SBS改性沥青,并进行动力黏度试验和动态剪切流变试验,探究高黏剂对沥青高温性能的影响。结果表明:当其他条件相同时,高黏剂含量越高,高黏沥青的抗高温流变性越强;当使用不同沥青种类进行复配时,高黏剂的种类和含量对高黏沥青高温流变性的影响有所差异,相比于LY-TPS,TAIYOU-TPS需要更高的含量提升高黏沥青黏度。  相似文献   

8.
通过SBS/岩沥青复合改性沥青的三大性能指标研究,分析了岩沥青和SBS的用量比变化对改性沥青性能的影响规律。结果表明:在改性沥青中有效成分用量不变的情况下,随着其中岩沥青用量比例的不断增大,改性沥青针入度的变化不大;改性沥青的软化点呈明显下降的趋势,即岩沥青与SBS复合改性对提高软化点的效果不如单独应用SBS的效果好;改性沥青的延度呈明显下降的趋势,且改性沥青的15℃延度的下降程度更为显著。适量添加岩沥青可在一定程度上提高SBS在基质沥青中的分散性。  相似文献   

9.
SBS/岩沥青复合改性沥青基本性能研究   总被引:1,自引:1,他引:0  
通过SBS/岩沥青复合改性沥青的三大性能指标研究,分析了岩沥青和SBS的用量比变化对改性沥青性能的影响规律。结果表明:在改性沥青中有效成分用量不变的情况下,随着其中岩沥青用量比例的不断增大,改性沥青针入度的变化不大;改性沥青的软化点呈明显下降的趋势,即岩沥青与SBS复合改性对提高软化点的效果不如单独应用SBS的效果好;改性沥青的延度呈明显下降的趋势,且改性沥青的15℃延度的下降程度更为显著。适量添加岩沥青可在一定程度上提高SBS在基质沥青中的分散性。  相似文献   

10.
为了进一步提升聚苯乙烯-丁二烯-苯乙烯(SBS)改性沥青的中温疲劳和低温抗开裂性能,将适量低黏度的大豆油(Bio-oil)和废机油(WEO)加入到SBS和基质沥青中制备成低黏油/SBS复合改性沥青。用旋转薄膜老化烘箱(FTRO)和压力老化容器(PAV)试验来模拟各改性沥青样品短期和长期老化。通过采用多应力蠕变松弛(MSCR)、线性振幅扫描(LAS)和弯曲梁流变仪(BBR)试验分别从高-中-低温性能的角度来表征复合改性沥青的流变性能。试验结果表明,两类低黏油均能有效地提升SBS改性沥青的中温疲劳性能和低温开裂性能,而MSCR结果显示高温性能受到了一定负面影响。总的来说,与WEO相比,Bio-oil的改性效率较高,即同等的性能提升前提下,所需Bio-oil掺量较低。  相似文献   

11.
通过对高粘度基质沥青(AH-30)、重交沥青(AH-70)及SBS改性沥青混合料进行SST剪切和贯入剪切试验,对比研究了3种不同沥青混合料的高温抗剪性能.结果表明:高粘度基质沥青混合料的高温抗剪性能优于重交和改性沥青混合料,抗高温车辙能力明显,可适用于南方湿热地区沥青路面中下面层.  相似文献   

12.
借助微观试验对以费托蜡为主要原料的自主研发微晶蜡类温拌沥青改性剂性能进行评价,通过气相色谱、差热分析、红外光谱等微观试验表明,自研发温拌改性剂分子结构、化学组成和纯度较好;温拌改性沥青的基本性能试验与SHRP性能试验表明,相较于基质沥青,温拌沥青高温粘度降低,软化点显著提高,并使基质沥青提高了一个高温PG等级,说明自主研发的温拌改性剂具有较好的降粘与提高高温性能的功能。  相似文献   

13.
橡胶沥青具有高粘度的特点,而温拌剂改善了沥青混合料的施工和易性,实则是降低了沥青混合料的同温度粘度。关于温拌剂的加入是否会对橡胶沥青的老化性能产生影响,目前研究较少。通过室内短期老化模拟、长期老化模拟以及老化性能评价,分析Evotherm温拌剂的掺加及其剂量对橡胶沥青老化后的高温粘度、车辙因子(G*/sinδ)及蠕变劲度S等性能指标的影响,结果表明:Evotherm温拌剂没有改善橡胶沥青在拌合和施工阶段的抗老化性能的能力;老化指数(AIPAV,AIRTFO)随Evotherm温拌剂剂量的增加而减少;老化使得添加温拌剂的橡胶沥青的低温抗裂性能有一定程度的提高;综合考虑施工高温下的老化和使用过程中的长期老化,建议选择12%Evotherm的剂量。  相似文献   

14.
为了满足浇筑式沥青混凝土对沥青结合料的特殊性能要求,通过对不同掺加比例的橡胶粉复合改性沥青的性能进行试验分析,确定了最佳橡胶粉掺量,并对橡胶复合改性沥青在不同温度下的粘度进行了测试,以说明橡胶粉加入到浇筑式沥青混凝土中不会影响其施工流动性.分别采用橡胶粉复合改性沥青和岩沥青复合改性沥青作为浇筑式沥青混凝土,在高、低温时,对其性能进行了对比.试验结果表明:采用橡胶粉复合改性沥青作为浇筑式沥青混凝土用沥青结合料,可以达到同等材料使用要求,是可行的.  相似文献   

15.
为进一步提高废轮胎橡胶沥青混合料路用性能,将废塑料(PP、PVC)制成颗粒或粉末与废轮胎胶粉一起添加到基质沥青中,通过物理和化学等加工工艺制成废塑胶粉复合改性沥青.对两种复合改性沥青的各项性能指标以及混合料路用性能进行试验,结果表明:废聚丙烯-橡胶粉复合改性沥青不仅大幅度降低了沥青胶结料的高温粘度,同时混合料的路用性能...  相似文献   

16.
对基质沥青和4种改性沥青分别进行高温条件下的稳态流动试验和静态蠕变试验,应用流变模型拟合零剪切黏度(ZSV),并对拟合结果进行深入分析。结果表明:稳态流动试验可反映沥青的稳态流动状态,由该试验拟合的ZSV与60℃动力黏度具有较高的相关性,能较好地评价基质沥青和部分改性沥青的高温性能,但无法准确描述高强改性沥青优秀的抗车辙性能;两种试验结果拟合的改性沥青ZSV相差很大,静态蠕变试验的拟合结果明显偏小,说明改性沥青尚未进入稳态流动状态,需要更长的蠕变时间才能获得准确的ZSV。  相似文献   

17.
借助动态剪切流变仪(DSR)、低温弯曲流变仪(BBR)和Brookfild旋转黏度仪,对不同掺量的天然岩沥青改性沥青的性能进行了试验研究,分析了岩沥青改性剂对基质沥青流变性能的影响。结果表明:加入岩沥青后沥青胶结料的PG高温等级和黏度提高,抗车辙因子增大,相位角减小,大大提高了沥青的高温稳定性和降低了温度敏感性,且随着掺量的增加变化幅度增大;低温条件下蠕变劲度模量增大,低温性能有所下降,但当岩沥青掺量为2%~8%时,不会对沥青胶结料的低温性能产生大的不利影响。  相似文献   

18.
为了解决聚合物改性沥青储存稳定性差、易离析、易老化等问题, 利用聚氨酯(PU) 对沥青进行化学改性; 制备了PU改性沥青, 采用傅里叶变换红外光谱(FTIR)、动态热机械分析(DMA) 和差示扫描量热法(DSC) 试验研究了PU改性沥青的改性机理, 采用Brookfield旋转黏度试验、动态剪切流变(DSR) 试验、低温弯曲梁流变(BBR) 试验、旋转薄膜烘箱加热试验(RTFOT) 和紫外老化试验等评价了PU改性沥青、SBS改性沥青和70#基质沥青的性能。研究结果表明: 圆盘锯齿式搅拌器可以很好地暴露沥青中的活性基团, 使PU达到较好的改性效果; PU改性沥青中主要存在2种反应, 一是异氰酸酯与多元醇之间反应生成氨基甲酸酯, 二是异氰酸酯与沥青质中的芳香族化合物之间发生加成反应; PU改性沥青的高温布氏黏度高于同温度下的SBS改性沥青, 且64℃时的抗车辙因子是SBS改性沥青的6倍左右, 说明其高温性能非常优异; PU改性沥青RTFOT前后针入度比达到了85%, 软化点变化幅度为0.5℃, 说明其抗热氧老化性能非常优异; 在紫外老化试验中, PU改性沥青软化点和针入度变化范围分别为1℃~4℃和0.1~0.3 mm, 说明其抗紫外老化性能非常优异。   相似文献   

19.
宋勇 《交通标准化》2012,(22):11-14
制备了普通橡胶沥青与脱硫橡胶沥青,并对不同掺量的两种橡胶改性沥青进行性能对比,最后选择合适的胶粉掺量进行了橡胶改性沥青混合料路用性能的评价.研究表明:经过高速剪切工艺,大颗粒的脱硫橡胶颗粒在沥青里大多分散成无明显颗粒的细小物质,而普通橡胶粉剪切后基本保持原有颗粒核心;与普通橡胶沥青相比,脱硫橡胶沥青的高温粘度低,但其他性能指标大多不如普通橡胶沥青;胶粉掺量的增加对普通橡胶沥青性能提升明显,而对脱硫橡胶沥青性能影响较小.  相似文献   

20.
通过对不同掺量的岩沥青改性沥青进行SHRP试验,对岩沥青改性沥青的性能进行研究.结果表明:添加岩沥青后,沥青胶结料的抗车辙因子、抗疲劳因子以及运动粘度值都有显著提高,PG高温等级提高了1~2个等级.但低温性能有所降低,在应用过程中需控制好岩沥青掺量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号