首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
通过实际试验得到验证,提出了环境温度对汽车工况法排放试验中各污染物的影响趋势及相关性分析;环境温度对CO和HC的影响较为明显,在冷启动阶段排放量随环境温度的升高而有较明显的改善,至IⅡ部循环时,环境温度对其影响不大;NOx排放量在汽车冷启动阶段受环境温度影响不大,仅当高温排气时,NOx会急剧增加,温度控制点在27~28℃时,对工况法排放中NOx排放量也有稍微改善.  相似文献   

2.
研究了多点电喷汽油机燃用不同掺混比的甲醇汽油混合燃料时的排放及催化器的转化性能。研究结果表明:在汽油机参数未做任何调整的情况下,甲醇对催化器前的CO、HC和NOx排放及其催化转化效率的影响与汽油机的转速、负荷和空燃比控制策略有关;随着甲醇汽油混合燃料中甲醇含量的增加,未燃甲醇的排放量变化不大,甲醛排放量增大,乙醇的排放量略有降低,乙醛的排放量很低并基本保持不变;醇、醛类排放经过三效催化转化器后基本接近零排放水平。  相似文献   

3.
This study summarizes engine speed and load effects on HC species emissions from premixed charge compression ignition (PCI) and conventional diesel combustion, and it evaluates diesel oxidation catalyst (DOC) formulations on a gas flow reactor for the purpose of diesel particulate filter regeneration or lean NOx trap desulfation. HC emissions are sampled simultaneously by a Tedlar bag for light HC species and by a Tenax TA™ adsorption trap for semi-volatile HC species, and they are analyzed by gas chromatography with a flame ionization detector. The bulk temperature and residence time during combustion are key parameters that are important for understanding the effects of speed and load on engine-out HC emissions. The degree of post-flame oxidation is higher in PCI than in conventional combustion, and it is increased for PCI with a higher speed and load, as indicated by a lower fuel alkanes/THC ratio, a higher alkenes/fuel alkanes ratio, and a higher methane/THC ratio. Ethene and n-undecane are two representative HC species, and they are used as a surrogate mixture in the gas flow reactor to simulate PCI and conventional combustion with in-cylinder post fuel injection. Among the three DOC formulations tested, the catalyst with constituent precious metals of platinum and palladium (PtPd) showed the best light-off performance, followed by PtPd with an addition of cerium dioxide (PtPd+CeO2), and platinum (Pt), regardless of exhaust compositions. Conventional combustion exhaust composition shows a lower light-off temperature than that of PCI, regardless of catalyst formulation.  相似文献   

4.
Most of hydrocarbon (HC) and carbon monoxide (CO) emissions from automotive DI Diesel engines are produced during the engine warm-up period and are primarily caused by difficulties in obtaining stable and efficient combustion under these conditions. Furthermore, the contribution of engine starting to these emissions is not negligible; since this operating condition is highly unfavorable for the combustion progress. Additionally, the catalytic converter is ineffective due to the low engine temperature. In conjunction with adequate engine settings (fuel injection and fresh air control), either the glow plugs or the intake air heater are activated during a portion of the engine warm-up period, so that a nominal engine temperatures is reached faster, and the impact of these difficulties is minimized. Measurement of gaseous pollutants during engine warm-up is currently possible with detectors used in standard exhaust gas analyzers (EGA), which have response times well-suited for sampling at such transient conditions. However, these devices are not suitable for the measurement of exhaust emissions produced during extremely short time intervals, such as engine starting. Herein, we present a methodology for the measurement of the cumulative pollutant emissions during the starting phase of passenger car DI Diesel engines, with the goal of overcoming this limitation by taking advantage of standard detectors. In the proposed method, a warm canister is filled with an exhaust gas sample at constant volumetric flow, during a time period that depends on the engine starting time; the gas concentration in the canister is later evaluated with a standard EGA. When compared with direct pollutant measurements performed with a state-of-art EGA, the proposed procedure was found to be more sensitive to combustion changes and provided more reliable data.  相似文献   

5.
One of the major goals of engine designers is the reduction of fuel consumption and pollutant emissions while keeping or even improving engine performance. In recent years, different technical issues have been investigated and incorporated into internal combustion engines in order to fulfill these requirements. Most are related to the combustion process since it is responsible for both fuel consumption and pollutant emissions. Additionally, the most critical operating points for an engine are both the starting and the warming up periods (the time the engine takes to reach its nominal temperature, generally between 80°C and 90°C), since at these points fuel consumption and pollutant emissions are larger than at any other points. Thus, reducing the warm-up period can be crucial to fulfill new demands and regulations. This period depends strongly on the engine cooling system and the different strategies used to control and regulate coolant flow and temperature. In the present work, the influences of different engine cooling system configurations on the warm-up period of a Diesel engine are studied. The first part of the work focuses on the modeling of a baseline engine cooling system and the tests performed to adjust and validate the model. Once the model was validated, different modifications of the engine coolant system were simulated. From the modelled results, the most favourable condition was selected in order to check on the test bench the reduction achieved in engine warm-up time and to quantify the benefits obtained in terms of engine fuel consumption and pollutant emissions under the New European Driving Cycle (NEDC). The results show that one of the selected configurations reduced the warm-up period by approximately 159 s when compared with the baseline configuration. As a consequence, important reductions in fuel consumption and pollutant emissions (HC and CO) were obtained. On doctoral leave from Universidad Technológica de Pereira (Colombia)  相似文献   

6.
柴油机尾气后处理系统采用仅安装氧化催化转化器方案,通过试验确定了柴油机微粒捕集器定工况主动再生时所需的入口条件,通过对发动机不同工况排气温度的测量确定了微粒捕集器定工况主动再生的发动机工况点,得出了主动再生时排气管中所需喷入液化石油气的喷射脉宽.试验中氧化催化转化器对HC的转化效率达到了90%以上,满足了再生期间对催化...  相似文献   

7.
A system has been researched over the past 3 years for reducing the exhaust pollutants from diesel engines for light commercial vehicles. The system researched achieves Euro 6 standards for reduction of polluting gases (CO, HC, PM, NO). It consists of 4 main sections: 1. A heater and heat exchanger (HE); 2. A CO/HC oxidising catalyst (D°C); 3. Pt catalyst on a diesel particulate filter (DPF); 4. A NO reducing reaction (SCR) within the DPF. The system operates as follows. The exhaust gas contains oxidising gases, namely both O2 and NO2. The levels of CO and HC are oxidised by O2 to CO2 for temperatures above 200°C. Carbon (PM) is oxidised to CO2 by NO2 but requires a temperature above 250°C. The operating exhaust temperature of 300°C is ideal for the removal of NO by using the Pt catalyst and the CO generated within the DPF. The heater is required to be able to raise the exhaust temperature at any time to 300°C in order to optimise the performance of the system, since diesel engine exhaust temperatures vary between 160°C (slow speeds) to 350°C (high speeds). Considerable heat is required (??3 kW) to maintain the exhaust gas for a 2l engine at 300°C for engine idle conditions. Therefore a heat exchanger is required to re-circulate the input heat and thereby reduce the maximum power consumption to a maximum of 500W over the engine full operating test cycle. This energy is supplied by the engine battery and alternator. Experimental results have been obtained for the exhaust from a Kubota diesel engine and the reductions in exhaust emissions of 83% (CO/ HC), 58% (NOx) and 99% (PM) were obtained. The PM was continuously cleaned so that there was no build up of back pressure.  相似文献   

8.
Although premixed charge compression ignition (PCCI) combustion engines are praised for potentially high efficiency and clean exhaust, experimental engines built to date emit more hydrocarbons (HCs) and carbon monoxide (CO) than the conventional machines. These compounds are not only strictly controlled components of the exhaust gas of road vehicles but are also an energy loss indicator. The prime objective of this study was to investigate the major sources of the HCs formed in the combustion chamber of an experimental PCCI engine in order to suggest some effective technologies for HC reduction. In this study, to explore the dominant sources of HC emissions in both operation modes, a single cylinder engine was prepared such that it could operate using either conventional diesel combustion or PCCI combustion. Specifically, the contributions of the top-ring crevice volume in the combustion chamber and the bulk quenching of the lean mixture were investigated. To understand the influence of the shape and magnitude of the crevice on HC emissions, the engine was operated with 12 specially prepared pistons with different top-ring crevices installed one after another. The engine emitted proportionally more HCs as the depth of the crevice increased as long as the width remained narrower than the prevailing quench distance. The top-ring-crevice-originated exhaust HCs comprised approximately 31% of the total HC emissions in the baseline condition. In a series of tests to estimate the effects of bulk quench on exhaust HC emissions, intake air was heated from 300K to 400K in steps of 25K. With the intake air heated, HC and CO emissions decreased with a gradually diminishing rate to zero at 375K. In conclusion, the most dominant sources of HC emissions in PCCI engines were the crevice volumes in the combustion chamber and the bulk quenching of the lean mixtures. The key methods for reducing HC emissions in PCCI engines are minimizing crevice volume in the combustion chamber and maximizing intake air temperature allowed based on the permissible NOx level.  相似文献   

9.
商用车柴油机多采用DOC+SCR的后处理系统来满足国Ⅳ、国Ⅴ排放标准的要求,而不同类型SCR的催化特性对最终污染物排放影响也不同。试验获取了一支铜基分子筛型SCR,基于1台2.8L柴油机和一支钒基SCR,运行了车用柴油机稳态循环(ESC)和瞬态排放循环(ETC),研究并分析了其对柴油机污染物的减排特性。结果表明,相较于钒基SCR,运行ETC循环时分子筛型SCR对发动机NOx和PM排放的减排效率分别提升19%和33%;分子筛型SCR对NOx的低温转化效率更高,且由于对排气流量不敏感,在高空速工况下其转化效率显著高于钒基SCR;分子筛型SCR对颗粒物个数的减排效率弱于钒基SCR,达7%以上,容易将大质量颗粒物分解为小质量颗粒物;两种SCR均对CO和HC具有一定的减排效果,减排率可达20%左右。  相似文献   

10.
SiC泡沫陶瓷用作柴油机尾气净化催化剂载体的研究   总被引:1,自引:0,他引:1  
杜庆洋 《汽车工程》2007,29(10):870-872,858
将具有三维连通网状结构的碳化硅(SiC)泡沫陶瓷作为柴油机尾气净化中HC和CO的催化剂载体,研究了SiC泡沫陶瓷的性能和电加热效果。结果表明:S iC泡沫陶瓷具有合适的电导率和良好的抗热震性能,适于用作电加热催化剂载体;可提高柴油机低温排气时HC和CO的转化效率。  相似文献   

11.
This study was conducted to examine the impact of aged and new DPF systems of the Euro 5 diesel passenger car on fuel efficiency and exhaust emissions. Test diesel vehicle used in this study was equipped with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) as aftertreatment systems, and satisfied the Euro-5 emissions standard. The displacement volume of engine was 1.6 L and the cumulative mileage was 167,068 km before the test. The FTP-75 test procedure was used, and the time resolved and weight based exhaust emissions of total hydrocarbon (THC), carbon monoxide (CO) and nitrogen oxides (NOx) were measured. The results show that the vehicle with the new DPF system has lower emissions of THC, CO and NOx than the aged one, and fuel efficiency also increased about 5 percent. The aged DPF system had higher backpressure due to the particulate matter (mostly in the form of ash) accumulated in the DPF. As was shown in the analysis using X-CT (X-ray computer tomography), the aged DPF system had particulate matter (PM) accumulated to a length of 46.6 mm. In addition, a component analysis of PM through XRF (X-ray fluorescence) analysis found that 50 % or more of the components consisted of the P, S, Ca, and Zn.  相似文献   

12.
Lean NOx trap (LNT) catalyst has been used to reduce NOx emissions from diesel engines. The LNT absorbs NOx in lean condition and discharges N2 by reducing NOx in rich conditions. Thus, it is necessary to make exhaust gas lean or rich conditions for controlling LNT system. For making a rich condition, a secondary injector was adopted to inject a diesel fuel into the exhaust pipe. In the case of secondary injector, the behavior of spray is easily affected by high temperature (i.e., 250 ~ 350 °C) occurred in the exhaust manifold. Therefore, it is needed to investigate the spray behavior of diesel fuel injected into an exhaust manifold, as well as the conversion characteristics for a lean NOx trap of a diesel engine with LNT catalyst. The characteristics of exhaust emissions in NEDC (New European Driving Cycle) mode were analyzed and spray behaviors were visualized in various exhaust gas conditions. The results show that as the exhaust gas mass flow increases, the spray cone angle becomes broad and the fuel is directed to the flow field. Besides, the cone angle of spray is decreased by centrifugal force caused in exhaust gas flow field. In addition, the effects of nozzle installation degree, injection quantity, and exhaust gas flow on NOx conversion performance were clarified.  相似文献   

13.
电控LPG/柴油双燃料发动机的性能研究   总被引:2,自引:0,他引:2  
对LRC6105柴油机改装为电控LPG/柴油双燃料发动机进行了实验研究,研究了不同掺烧比对燃料经济性、动力性和排放特性的影响。结果表明,加入一定比例的LPG可改变缸内燃烧过程,大幅度降低排气烟度,在一定程度上提高了燃油经济性;随着掺烧比的提高,尾气中HC和CO的含量有明显增加;电控双燃料发动机的动力性与原机基本相同。柴油机掺烧LPG有一定的规律,随发动机负荷、转速等参数的变化,掺烧有一最佳掺烧比,使得柴油机的动力性能、NOx和碳烟排放均达到最优化。  相似文献   

14.
通过研究混合动力工程开发样车(Mule)与传统车在NEDC循环工况下的排放,发现Mule车相比较传统车排放不降反升,说明如果混合动力汽车没有经过相关标定优化,其控制策略会对整车排放产生消极影响。改进后的产品样车(OTS)在排放方面远远好于Mule车,除了NOx排放稍稍高于传统车外,HC和CO排放均低于传统车。  相似文献   

15.
轻型车燃用生物柴油瞬态工况排放特性的研究   总被引:2,自引:0,他引:2  
梅德清  袁银南  孙平  陈竞 《汽车工程》2007,29(2):117-120
通过对轻型车燃用生物柴油和0#柴油尾气排放的测量和分析,研究瞬态工况有害排放物模态特性。试验结果表明,与0#柴油相比,轻型车燃用生物柴油可显著改善冷启动过程的HC和CO排放,其HC、CO和PM比排放分别降低76.9%、45.7%和52.8%,但NOx比排放增加5.8%。燃料在燃烧转变为CO2和H2O释放出化学能的同时也将空气中的N2氧化成NOx,因而可用NOx/CO2来描述NOx排放随运行工况的变化规律。  相似文献   

16.
A cycle-resolved analysis system was designed with the specified measurement instruments to investigate the characteristics of combustion stability in a mild gasoline hybrid powertrain. A Fast Response Flame Ionization Detector (FFID), cylinder pressure transducer and engine torque transducer were used to observe both the engine-out THC emissions and engine performance during a brief moment of engine restart. This research aimed to improve combustion stability and was performed by varying the battery State Of Charge (SOC), injection duration and ignition timing. The results indicate that engine combustion tends to be more stable with longer fuel injection durations and advanced ignition timing, while the effect of the battery SOC is negligible. Also, peculiar differences in the catalyst conversion efficiency at the front and rear of the catalyst during engine restart and deceleration were revealed, with the degree of HC oxidation being the suspected cause. This study not only analyzed the engine control and engine-out total hydrocarbon (THC) emission characteristics, but also implemented control strategies that allowed for combustion stability during engine stop and restart operation.  相似文献   

17.
内燃机能量流试验是评估不同控制策略下内燃机能耗和指明其改善方向的重要方法。通过试验对1台涡轮增压缸内直喷汽油机进行了基于冷却液温度的能量平衡分析,基于热力学定律,将能量平衡项分为有效功、冷却液损失、排气损失和通过辐射传热产生的未计入热损失。结果表明:小负荷时,随着冷却液温度的升高,燃油消耗率略有下降,NO_x排放量增加;全工况下,HC排放量随着冷却液温度的升高而减少,CO和CO_2排放量变化不大;有效功占比和排气损失占比随负荷的增大而增大,几乎不受冷却液温度的影响;冷却液损失占比随冷却液温度的升高而减小。  相似文献   

18.
在NEDC循环工况下,研究了采用400目催化转化器的混合动力汽车的动力控制策略对其催化转化器的转化效率的影响。研究表明,怠速停机后,残余排放物附着在气缸及排气管内,在发动机重新启动后,会造成催化转化器过载,从而使转化率下降;在加速断油过程中,由于没有燃油喷射,新鲜空气被直接排入排气管,造成排气管内氧浓度的增加,从而影响NOx的转化。更换600目催化转化器后,催化转化率有明显改善,但仍不能根除控制策略对转化率的影响。  相似文献   

19.
测量了某车用电喷汽油机在冷起动、冷加/减速、空载热突减速及热加速等工况下排气中CO,HC,NOx,CO2和O2的体积分数,并分析了原因。结果表明,发动机冷起动时排出大量的HC和CO,而此时催化转化器尚未起燃,需从混合气制备和燃烧过程优化等方面对该阶段着重控制;冷加/减速工况下,CO,HC和NOx排放均出现了峰值,实际运行时应尽量减少此类操作;空载热突减速工况下,HC排放出现了较大的峰值,表明减速断油策略仍需进一步研究;而热加速工况的控制重点则是NOx排放。  相似文献   

20.
内外EGR和喷油压力对柴油机低温燃烧的影响   总被引:1,自引:0,他引:1  
在1台装有电液可变气门的单缸柴油机上,通过改变内外EGR策略和喷油压力,对柴油机小负荷工况下低温燃烧的燃烧特性和排放特性进行了试验研究。内部EGR通过排气门两次开启实现,发动机转速和喷油量分别固定为1 500r/min和20mg/cycle。研究结果表明,通过高EGR率控制可以实现超低NOx排放,其中采用高喷油压力可以降低内部EGR的炭烟排放,而采用低喷油压力可以降低外部中冷EGR的HC和CO排放。在内外EGR耦合控制策略中,提高内部EGR比例可以降低HC和CO排放,但改善效果逐渐减弱,同时为了抑制炭烟排放,需要结合更高喷油压力,而提高外部中冷EGR比例可以获得较高热效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号