首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
以国内某拖曳水池船模阻力校准为应用示范,提出拖曳水池船模阻力精确校准方法。首先,研究建立阻力标准模型,并将国际拖曳水池会议(ITTC)介绍的重复性试验拓展至不等精度的多组试验,以加权算术平均值作为测量结果的最佳估计,确定精确的船模阻力基准数据。其次,开展船模阻力总阻力系数不确定度的分析,并结合二因次换算法,提出基于"测量不确定度表示指南"(GUM)的总阻力系数不确定度评估方法。最后,利用与国内水池船模阻力的比对而获取修正值,实现船模阻力参量的校准;同时,开展国际比对,进一步验证了拖曳水池船模阻力精确校准方法的可操作性和合理性。  相似文献   

2.
参考国际拖曳水池会议(ITTC)推荐的规程,对船模拖曳水池的阻力试验进行不确定度分析。根据船模阻力试验的流程,确定试验过程中的误差源;根据不确定度的传递方程,确定误差源对试验结果的影响;基于一艘船模标准模型进行带舵的复合航次重复试验,并根据试验误差源分析得到试验结果的不确定度。在此基础上,提出降低试验不确定度的方法。分析结果表明,在95%置信水平下(k=2),总阻力及其主要水动力系数的不确定度均小于1%,试验结果可作为标模基准校验使用。  相似文献   

3.
为了提高拖曳水池船模试验精度和便于相互交流与比较,第22届和23届国际船模试验池会议(ITTC)都推荐世界各国水池在给出试验结果的同时,也给出试验结果的不确定度.文中给出一艘玻璃钢标准船模在江苏科技大学拖曳水池进行重复阻力试验的情况,采用了ITTC建议的不确定度估计方法,对该船模的船型因子(1+K)、湿面积(S)、傅汝德数(Fr)进行了不确定度分析,给出了分析结果.并且计算出在试验速度下各阻力系数Ci的偏差限、精度限和总不确定度,对试验结果进行了综合分析.  相似文献   

4.
根据江苏科技大学水池、拖曳系统和测量设备参数,开展缩尺比为1∶70的KCS基准船模直航拖曳试验。按照国际拖曳水池会议(ITTC)试验不确定度分析规程,对KCS设计航速下复合航次的阻力测量以及船体表面波形测量进行不确定度分析。结果表明:在95%置信水平下(k=2),船模试验总阻力的相对不确定度在1%以下,B类总的不确定度对总阻力的影响最大;对于船体表面波形测量不确定度,刻度标注偏差的不确定度所占比重最大。  相似文献   

5.
对水面船舶阻力性能数值计算中网格不确定度开展了数值计算与试验研究。以三体船中体为计算模型,基于CFD软件FLUENT,分析了船体表面网格尺度大小、第一层网格节点到船体表面的距离、网格节点分布比例系数三个因素对船体阻力计算的影响。通过改变各个网格因素,对不同网格进行了数值计算,最后将计算结果与试验结果进行了对比,分析了不同的网格划分方式对计算结果的影响,从而得到了一套比较可行的船模数值计算网格划分方法,为船模数值计算网格划分提供一定的参考。  相似文献   

6.
依据大连理工大学船模试验水池多年试验数据,采用数值分析方法,结合船模阻力试验影视资料开发船模阻力虚拟试验教学系统,较为形象地模拟船模阻力试验,对船模阻力试验进行虚拟教学.该系统运用Visual Basic程序设计语言,采用了面向对象设计方法,结合可视化设计技术,使得系统具有良好的可维护性、扩展性和开放性.  相似文献   

7.
浸没式喷水推进器与船体高度融合,难以通过试验的方法测量推进器各部件受力,因此文中采用船模水池试验和数值模拟相结合的方法来分析浸没式喷水推进的水动力特点。该文首先开展了船模拖曳阻力试验,测量了船模阻力、纵倾角及重心升沉。然后开展船模自航试验,测量了船模纵倾角、升沉及轴的转速、力矩、推力等数据。基于CFX软件,对拖曳阻力试验及船模自航试验进行了数值模拟。在四个不同航速下的数值模拟中,阻力计算误差在3.7%以内,轴推力计算误差在2.7%以内,轴力矩计算误差在4.6%以内,试验测量值和CFD预报值吻合较好。通过数值模拟可以进一步得到浸没式喷水推进器上各部件的受力情况,泵的流量、扬程及其它流场信息,克服了浸没式喷水推进器推力测量和流场测量的困难。  相似文献   

8.
基于CFD技术,以排水型高速船Model 5b为模型,寻求改善高速船阻力性能的尾压浪板新形式。首先尾压浪板新形式的确定在静水条件下进行,然后在波浪条件下验证该压浪板的阻力性能。基于CFD软件建立三维数值波浪水池,静水条件下采用切割体网格技术预报船模的阻力性能。波浪条件下数值水池入口采用直接造波方法,尾部采用人工阻尼消波方法,自由面采用VOF方法处理,采用重叠网格技术预报船模的阻力性能以及运动响应。确定一种比常规压浪板阻力性能优良的分段式压浪板,为船舶节能附体的研究提供参考。  相似文献   

9.
依托数值水池创新专项,文章借助商业软件STARCCM+方便的可视化界面以及工程应用的经验,探索出了一套船舶阻力计算策略,然后通过策略移植和转化,开发出了基于Open FOAM的船模阻力评估模块。为了达到工业化应用的要求,在开发船模阻力评估模块时不仅力求精确性而且还要兼顾鲁棒性。最后在12艘不同类型单桨商船25个工况点的测试计算中,所有样本点的计算精度都达到了3%以内,船模阻力评估模块的工程实用性得到了验证。  相似文献   

10.
结合一新建水池介绍了船模拖曳水池的设计理念及方法,阐述了水池主要尺度与拖车速度、加速度、制动速度的关系,指出了确定水池长度、宽度、深度应注意的问题,分析了系列速度段拖车速度运行状况,于一年内不同时段先后开展了5次重复试验,用以跟踪研究水池拖车系统稳定性,5次试验数据重复性好。为验证试验精度,与其它两个水池开展船模静水阻力比对试验,结果显示比对试验数据吻合。  相似文献   

11.
通过改变母船的船长和剖面参数来改变船型,得到系列样本船型,应用基于切片法理论的舰船耐波性计算程序对母船及样本船型进行计算,将所得计算结果进行多元回归分析,得到船舶耐波性预报数学模型.分别用耐波性计算程序和回归模型对例船进行计算,结果证明该预报模型具有较高的精度.  相似文献   

12.
针对实船功率性能测量与分析涉及因素多,难以通过传统GUM法对修正得到的理想状态功率与航速结果进行不确定度评价的问题,提出基于蒙特卡洛法的实船功率性能不确定度分析方法,分析实船功率性能试验中的主要不确定度源,依据ISO15016数据处理方法建立测量模型,以大连海事大学教学实习船“育鲲”轮为对象分析实船功率性能试验与不确定度,获得了功率和航速测量的不确定度水平与主要影响量,验证了不确定度分析方法的适用性。  相似文献   

13.
船舶有效功率的准确预报对船舶的快速性和经济性有很大影响。本文采用Star-CCM+软件对某LPG运输船模型进行阻力计算,通过二因次法将其转化为实船阻力,然后预报实船的有效功率并与模型实验结果进行对比,验证数值计算结果的准确性。数值计算与模型实验2种方法所得结果的最大误差小于5%,证明基于Star-CCM+软件预报船舶有效功率的方法可行。  相似文献   

14.
为了实现对低速多用途船舶的阻力性能进行准确预报,提出将基于CFD的数值模拟与三因次法相结合的总阻力预报方法,采用Solidworks三维软件对某低速多用途船进行三维建模,依据Gambit软件对模型进行流域划分和网格划分,应用CFD理论选取合理的湍流模型和求解方法进行数值模拟计算,得到对应航速下船模的总阻力值系数,根据普鲁哈斯卡假设和三因次方法,利用最小二乘法拟合形状系数,进而计算出实船的总阻力,并且分析数值模拟的速度云图.最后与传统阻力估算方法-艾亚法进行比较,说明本文采用的阻力计算方法是可行性,给今后低速多用途肥大型船的阻力研究提供借鉴.  相似文献   

15.
高速三体船波浪中运动与增阻CFD计算研究   总被引:1,自引:0,他引:1  
基于数值波浪水池技术,对波浪中高速三体船运动及增阻进行CFD计算研究。控制方程—RANS方程和连续性方程使用有限体积法离散,非线性自由面采用VOF方法处理;在入口边界模拟柔性造波板运动产生入射波,使用位于波浪水池尾部的人工阻尼区消波。首先对规则波顶浪中单个主船体的运动和增阻进行了计算,并与高速细长体理论计算结果进行了比较;随后进行了三体船运动和增阻计算,分析了侧片体对主船体阻力增加的影响。为高速三体船耐波性研究提供了数值工具。  相似文献   

16.
冰阻力是影响船舶在冰区航行性能的关键因素。当前主要的冰阻力研究方法有经验公式法、模型/实船试验法和数值模拟方法。数值模拟方式能够对船舶破冰的全过程进行快速模拟,且模拟成本低,参数易于控制 、结果较为准确,是一种比较适宜的冰阻力预报方法。随着计算技术的进步,各种数值模拟方法层出不穷,其中包括基于网格单元的有限元模型,基于无网格方法的离散元模型、SPH法、近场动力学模型等;近年来,网格模型与无网格模型的耦合方法也逐渐发展起来。文章简要梳理了冰区航行船舶冰阻力数值研究的进展,并基于研究现状提出尚需进一步解决的问题,意在为进一步提高冰阻力数值模拟精度提供参考。  相似文献   

17.
波浪中航行船舶阻力增加,特别是短波中的阻力增加,是船舶界关注的焦点之一,也是船舶水动力学界研究的热点之一。论文采用基于RANSE的数值波浪水池技术,针对KVLCC2船型,开展了短波顶浪中船舶阻力增加的数值计算研究。与模型试验结果的比较表明,文中的CFD方法能够相当准确地计算短波顶浪中航行船舶的阻力增加;对船体各部分波浪增阻的分析表明,船体艏段产生的波浪增阻占主导地位,艉段的波浪增阻很小,而平行中体段对波浪增阻几乎无贡献。  相似文献   

18.
船舶在海上航行时受到海风、海浪和海流等环境扰动作用,这造成在不同航速下船舶动力学模型的参数不确定性,本文对船舶本体运动和风浪流干扰进行建模,提出一种基于分数阶PIλDμ的抑制风浪干扰的的航向控制算法,并与传统 PID算法进行对比,针对某型船舶动力学模型在6级海风和5级海浪海况下进行对比数字仿真。仿真结果表明,该算法在不同航速下具有较好的控制品质和鲁棒性,对风浪干扰具有良好的适应性,可应用于船舶的航向控制,易于工程实现。  相似文献   

19.
In a Thermal-Elastic-Plastic (TEP) FE analysis to investigate welding induced buckling of large thin plate welded structure such as ship panel, it will be extremely difficult to converge computation and obtain the results when the material and geometrical non-linear behaviors are both considered. In this study, an efficient FE computation which is an elastic FE analysis based on inherent deformation method, is proposed to predict welding induced buckling with employing large deformation theory, and an application in ship panel production is carried out. The proposed FE computation is implemented with two steps:(1) The typical weld joint (fillet weld) existing in considered ship panel structure is conducted with sequential welding using actual welding condition, and welding angular distortion after completely cooling down is measured. A TEP FE analysis with solid elements model is carried out to predict the welding angular distortion, which is validated by comparing with experimental results. Then, inherent deformations in this examined fillet welded joint are evaluated as a loading for the subsequent elastic FE analysis. Also, the simultaneous welding to assemble this fillet welded joint is numerically considered and its inherent deformations are evaluated.(2) To predict the welding induced buckling in the production of ship panel structure, a shell element model of considered ship panel is then employed for elastic FE analysis, in which inherent deformation evaluated beforehand is applied and large deformation is considered. The computed results obviously show welding induced buckling in the considered ship panel structure after welding. With its instability and difficulty for straightening, welding induced buckling prefers to be avoided whenever it is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号