首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为了深刻认识高疲劳抗力钢桥面板的疲劳特性,准确评估其结构体系的疲劳抗力,基于等效结构应力建立了考虑焊接微裂纹对钢桥面板疲劳性能劣化效应的结构体系疲劳抗力评估方法,并通过疲劳试验对所建立的评估方法进行了验证。在此基础上采用所建立的结构体系疲劳抗力评估方法对高疲劳抗力钢桥面板的疲劳开裂模式、疲劳抗力及其影响因素等相关关键问题进行系统研究。研究结果表明:焊接微裂纹的存在会显著降低钢桥面板的疲劳性能,导致主导疲劳开裂模式发生迁移;结构体系设计参数对纵肋与顶板双面焊构造细节和纵肋与横隔板新型交叉构造细节疲劳性能的影响有显著区别,其中纵肋与顶板双面焊构造细节的疲劳性能主要对顶板厚度的变化较为敏感,其疲劳性能随着顶板厚度的增加而显著提升,而纵肋与横隔板新型交叉构造细节的疲劳性能同时受多个参数的影响,其疲劳性能随着顶板厚度、横隔板厚度和纵肋高度的增大而提升,随着横隔板间距和纵肋底板与横隔板之间焊缝长度的增大而降低;传统钢桥面板的主导疲劳开裂模式为纵肋腹板与横隔板交叉构造细节围焊焊趾开裂,高疲劳抗力钢桥面板的主导疲劳开裂模式为纵肋底板与横隔板交叉构造细节纵肋焊趾开裂;相对于传统正交异性钢桥面板,高疲劳抗力钢桥面板结构实现了主导疲劳开裂模式的迁移,疲劳性能显著提高。  相似文献   

2.
钢桥面板的疲劳问题是制约钢结构桥梁可持续发展的关键难题,纵肋与顶板传统单面焊构造细节是控制钢桥面板疲劳性能、疲劳开裂危害最为严重的易损构造细节。以中国自主研发的纵肋与顶板新型双面焊构造细节为研究对象,研发了钢桥面板纵肋与顶板构造细节疲劳试验装置,参照近期中国典型重大工程的钢桥面板结构设计参数,在系统对比分析研究的基础上,设计12个构造细节疲劳试验模型和5个节段疲劳试验模型,通过疲劳破坏试验确定了纵肋与顶板新型双面焊构造细节的主导疲劳开裂模式和疲劳强度,探究了影响其疲劳性能的关键因素。研究结果表明:纵肋与顶板新型双面焊构造细节的疲劳强度显著高于纵肋与顶板传统单面焊构造细节,等效结构应力适用于纵肋与顶板新型双面焊构造细节的疲劳性能评估;实际熔透率不低于75%时多种焊接工艺条件下纵肋与顶板新型双面焊构造细节的主导疲劳开裂模式均为疲劳裂纹在顶板焊趾产生,并沿顶板板厚方向扩展,其名义应力疲劳强度高于90 MPa,等效结构应力疲劳强度高于100 MPa;制造缺欠是影响纵肋与顶板新型双面焊构造细节疲劳性能的关键因素;所研发的试验装置可通过构造细节模型实现对实际钢桥面板中纵肋与顶板焊接构造细节的准确模拟,准确获得纵肋与顶板构造细节疲劳性能。研究成果可为该长寿命新型构造细节的抗疲劳设计和工程实践提供依据。  相似文献   

3.
正交异性钢桥面板的疲劳开裂问题是制约桥梁工程可持续发展的关键难题,亟需发展具有高疲劳抗力的正交异性钢桥面板。同时引入纵肋与顶板新型双面焊构造细节和纵肋与横隔板新型交叉构造细节2类构造细节,提出了一种高疲劳抗力钢桥面板,设计了2个足尺节段模型,通过模型试验确定了纵肋与顶板传统单面焊构造细节和新型双面焊构造细节的疲劳开裂模式和疲劳性能,采用扫描电子显微镜(SEM)确定了单面焊构造细节焊根和双面焊构造细节焊趾的初始微裂纹尺度;研究了纵肋与横隔板传统交叉构造细节和新型交叉构造细节的疲劳开裂模式。研究结果表明:纵肋与顶板传统单面焊构造细节的疲劳裂纹起裂于顶板焊根并沿顶板厚度方向扩展,其疲劳强度为98.7 MPa,新型双面焊构造细节的疲劳裂纹起裂于顶板内侧焊趾并沿顶板厚度方向扩展,其疲劳强度为123.2 MPa;传统单面焊构造细节焊根的初始微裂纹尺度显著大于新型双面焊构造细节焊趾的初始微裂纹尺度,初始微裂纹尺度的差异是2种开裂模式的疲劳抗力存在显著差异的主要原因;纵肋与横隔板传统交叉构造细节的疲劳裂纹起裂于纵肋腹板焊缝端部焊趾并沿纵肋腹板扩展,新型交叉构造细节的疲劳裂纹起裂于纵肋底板焊缝端部焊趾并沿纵肋底板扩展,2类构造细节的起裂次数基本一致,但新型交叉构造细节的疲劳裂纹扩展速率远低于传统构造细节;相同加载条件下,高疲劳抗力钢桥面板结构体系的疲劳寿命显著优于传统钢桥面板结构体系。  相似文献   

4.
为了深刻认识正交异性钢桥面板的疲劳特性,准确评估其疲劳抗力,对纵肋与顶板焊接细节进行了三维疲劳裂纹扩展模拟。提出了一种主要针对椭圆或半椭圆形疲劳裂纹的扩展模拟方法,采用相互作用积分法计算裂纹尖端处的应力强度因子K,作为三维裂纹模拟的基本参量。以青山长江公路大桥正交异性钢桥面板疲劳试验节段模型为研究对象,将纵肋与顶板焊接细节处的疲劳裂纹近似为单个半椭圆形裂纹,对其扩展过程进行三维模拟,通过试验结果验证了所提方法的有效性。在此基础上将初始裂纹分别设置于焊根和顶板焊趾,探讨了顶板厚度和U肋形式对于纵肋与顶板焊接细节疲劳裂纹扩展特性的影响问题。研究结果表明:所提出的方法能够准确模拟纵肋与顶板焊接细节疲劳裂纹的扩展过程,适用于其疲劳问题研究;增加顶板厚度能够有效改善纵肋与顶板焊接细节处的疲劳性能;相对于传统纵肋与顶板焊接细节而言,顶板与镦边U肋焊根和焊趾处的疲劳裂纹扩展特性和疲劳抗力没有显著差别,顶板与镦边U肋焊缝构造细节难以显著改善焊根和顶板焊趾处的疲劳性能;萌生于焊根并向顶板扩展的疲劳失效模式是控制传统纵肋与顶板焊接细节和顶板与镦边U肋焊缝构造细节疲劳性能的主导疲劳失效模式。  相似文献   

5.
正交异性钢桥面板的疲劳问题属于多疲劳失效模式下的结构体系疲劳问题,为研究其结构体系的疲劳失效模式和疲劳抗力,以典型的正交异性钢桥面板为研究对象,提出基于主导疲劳失效模式的结构体系疲劳抗力评估方法。由正交异性钢桥面板的重要疲劳失效模式入手,设计3组共8个足尺节段模型,通过疲劳试验研究确定纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节的重要疲劳失效模式及其实际疲劳抗力;基于所提出的结构体系疲劳抗力评估方法,探讨引入镦边纵肋和双面焊等新型构造细节条件下正交异性钢桥面板结构体系的疲劳抗力问题。研究结果表明:纵肋与顶板焊接细节主导疲劳失效模式为疲劳裂纹萌生于焊根并沿顶板厚度方向扩展,而纵肋与横隔板交叉构造细节主导疲劳失效模式为疲劳裂纹萌生于端部焊趾并沿纵肋腹板扩展;初始制造缺陷会显著降低正交异性钢桥面板重要疲劳失效模式的疲劳抗力并导致疲劳失效模式迁移;对于正交异性钢桥面板的结构体系而言,引入新型镦边纵肋与顶板焊接细节无法提高结构体系的疲劳抗力;而引入纵肋与顶板新型双面焊细节,可使结构体系的主导疲劳失效模式迁移至顶板焊趾或纵肋与横隔板交叉构造细节,结构体系的疲劳抗力得到显著提高。  相似文献   

6.
正交异性钢桥面板疲劳开裂问题突出,其中纵肋与顶板传统单面焊构造细节疲劳开裂危害严重,为提升其疲劳性能,通过引入最新自动化焊接技术发展了纵肋与顶板新型双面焊构造细节。为明确其疲劳性能的关键问题,基于等效结构应力法进行了研究:首先对纵肋与顶板新型双面焊构造细节各疲劳失效模式的等效结构应力影响面进行深入分析,确定了构造细节的主导疲劳失效模式;在此基础上,研究了熔透率和焊缝几何尺寸对其疲劳性能的影响。研究结果表明:在纵向移动轮载作用下,纵肋与顶板新型双面焊构造细节的主导疲劳失效模式为顶板外侧焊趾起裂并沿顶板厚度方向扩展;对于该主导疲劳失效模式和焊趾起裂各疲劳失效模式,熔透率的影响不显著;对焊根起裂各疲劳失效模式而言,熔透率是关键影响因素,随着熔透率的增加焊根起裂各疲劳失效模式的等效结构应力幅值呈降低趋势,当熔透率达到75%时,其等效结构应力幅值均处于较低水平,此时纵肋与顶板新型双面焊构造细节的疲劳性能主要由焊趾起裂的各疲劳失效模式所控制;焊脚尺寸是纵肋与顶板新型双面焊构造细节疲劳抗力的另一关键影响因素,适当增大焊脚尺寸可有效降低焊趾起裂疲劳失效模式的等效结构应力幅值,进而提升焊趾起裂疲劳失效模式的疲劳性能。  相似文献   

7.
为了提高正交异性钢桥面板纵肋与顶板焊接构造细节的疲劳性能,提出了一种新型镦边纵肋与顶板连接构造细节,该构造细节通过局部镦厚与顶板连接部位的纵肋腹板,增大连接焊缝截面尺寸和局部刚度,从而减小该焊缝连接部位的应力集中程度,以实现提高纵肋与顶板焊接构造细节的疲劳性能的目的。作为一种新型焊接构造细节,其实际疲劳破坏模式和疲劳抗力均有待研究确定,为验证这一新型构造细节在改善纵肋与顶板焊接构造细节疲劳性能方面的有效性并确定其实际疲劳破坏模式和疲劳抗力,设计2组共7个足尺节段模型进行疲劳试验,对新型镦边纵肋与顶板焊接构造细节和传统纵肋与顶板焊接构造细节进行对比试验和理论研究。研究结果表明:控制2类构造细节的主导疲劳破坏模式均为萌生于焊根、沿顶板开裂的疲劳破坏模式;该疲劳破坏模式下新型镦边纵肋与顶板焊接构造细节和传统纵肋与顶板焊接构造细节的疲劳性能基本一致,新型镦边纵肋与顶板焊接构造细节对于该疲劳破坏模式下的实际疲劳性能无明显的改善效果;切口应力法适用于该构造细节焊根的疲劳性能评估,从便于工程应用的角度考虑,距离顶板焊趾5 mm处的应力值亦可作为纵肋与顶板焊接细节疲劳性能评估的依据。  相似文献   

8.
刘仕茂  祁义辉  刘涛 《公路与汽运》2023,(2):119-121+126
钢桥面板与纵肋双面焊焊接细节是新型构造细节之一,有助于改善钢桥面板疲劳性能。文中基于中欧规范中疲劳车形式,通过有限元数值模拟,采用热点应力法计算得到钢桥面板与纵肋双面焊焊接细节的热点应力历程,分析该细节的疲劳性能。  相似文献   

9.
在大纵肋正交异性钢桥面板结构中引入混凝土结构层,通过栓钉将钢桥面板与混凝土结构层组成新型大纵肋正交异性组合桥面板,是从结构体系层面提高大纵肋正交异性钢桥面板疲劳性能的有效途径。基于有限元数值分析,明确了大纵肋正交异性组合桥面体系对于钢桥面板典型疲劳易损细节的应力幅改善效果;采用足尺节段模型试验对结构的关键疲劳易损细节进行了疲劳试验研究,验证了关键疲劳易损细节在设计寿命期内的抗疲劳安全性和混凝土结构层在疲劳荷载作用下的耐久性,在此基础上对关键疲劳易损细节的疲劳损伤演化及结构体系的疲劳破坏模式进行了试验与理论研究。研究结果表明:大纵肋正交异性组合桥面板结构体系能够显著降低U肋与顶板以及U肋与横隔板连接细节的应力幅,横隔板开孔部位是控制钢桥面板疲劳性能的关键构造细节;设计寿命期内钢桥面板疲劳性能与混凝土结构层的疲劳耐久性均满足要求,且具有一定的安全储备;混凝土结构层负弯矩区疲劳开裂对钢桥面板各疲劳易损细节疲劳性能的影响不显著;大纵肋正交异性组合桥面板的疲劳破坏模式表现出典型的两阶段特征,栓钉发生疲劳断裂并导致组合效应局部劣化,进而加速钢桥面板关键疲劳易损细节的疲劳损伤累积速度并最终发生疲劳开裂。  相似文献   

10.
为研究焊接微裂纹缺陷对正交异性钢桥面板顶板与纵肋构造疲劳性能的影响,首先采用扫描电子显微镜对实际桥梁结构的焊接断面进行缺陷检测,统计分析微裂纹尺寸和分布特性,然后基于既有试验和有限元分析方法,结合断裂力学理论,评估不同微裂纹缺陷对构造细节劣化效应的影响,并分析焊接微裂纹关键特征参数对构造细节疲劳性能的影响。结果表明:顶板与纵肋构造的焊趾及焊根处普遍存在微裂纹缺陷,焊根处微裂纹尺寸(平均值150.7μm、标准差100.8μm)大于焊趾处(平均值29.8μm、标准差17.4μm);顶板与纵肋构造细节主导失效模型主要由微裂纹尺寸决定;构造细节疲劳寿命直接由焊接微裂纹尺寸决定,其疲劳强度为100~200 MPa;疲劳裂纹最终扩展方向与焊接微裂纹初始角度无关,仅受实际受力状态影响。  相似文献   

11.
为改善传统正交异性钢桥面板纵肋与横肋交叉构造细节的疲劳性能,提高其疲劳抗力,提出一种新型承托式横肋开孔形式,采用ANSYS软件建立大纵肋组合桥面板节段有限元模型,基于热点应力法和线性损伤累积理论分析纵肋与横肋交叉构造细节的疲劳性能,并与4种典型横肋开孔形式进行对比。结果表明:在不考虑残余应力的情况下,相对于4种典型横肋开孔形式,新型承托式横肋开孔形式的疲劳性能显著提高;纵肋与横肋交叉构造细节最大应力幅的出现位置转移至纵肋底部与横肋焊趾对应处内侧,应力幅为30.2MPa,满足设计要求;纵肋底部焊趾处应力为压应力。新型承托式横肋开口形式能够改善纵肋与横肋交叉构造细节的疲劳性能。  相似文献   

12.
针对正交异性钢桥面板,设计了相应的典型焊接构造细节,并进行了疲劳试验研究.疲劳试验结果表明,(1)横肋受力比较复杂,在箱梁端部横隔板与纵肋焊接位置下端首先出现细微的疲劳裂纹;(2)纵肋与顶板焊缝连接处外侧顶板与纵肋的损伤发展较大,疲劳破坏的位置为面板与纵肋交汇处焊缝构造,且均发生在面板母材上,而内侧顶板则无明显的损伤.同时,基于残余应变模型,研究了正交异性钢桥面板损伤发展历程,并利用连续分段函数模型描述整个寿命过程中的损伤累积规律,与已有试验资料对比表明了该函数模型的正确性.  相似文献   

13.
邓斌 《广东公路交通》2023,(5):28-31+37
钢桥面板疲劳问题是目前钢桥研究的热点课题之一,其中面板纵肋连接细节是钢桥面板危害较严重的疲劳细节。铺装层与面板共同受力决定面板纵肋连接细节的疲劳应力。为分析铺装层对该细节的影响,以国内某大跨度钢桥为对象,建立了疲劳分析有限元模型。计算结果表明:当钢桥面板厚度为16mm时,考虑铺装层受力后,面板纵肋连接细节最大疲劳应力幅由45.3MPa降低至36.7MPa。不同季节造成的铺装层刚度变化对该细节疲劳性能的影响不能忽略。  相似文献   

14.
新型UHPC—大纵肋波折板正交异性桥面板取消了顶板与纵肋焊缝,减少了横隔板与纵肋焊缝,为改善正交异性钢桥面板控制部位的疲劳性能提供了一个有效新途径。然而,由于波折板与横隔板保留横向焊缝,其疲劳风险仍然可能存在,故针对纵肋与横隔板位置的关键疲劳细节,采用数值分析并结合热点应力法对各参数影响下的轮载应力幅和疲劳寿命进行评估验证。结果表明,新型组合桥面板的大纵肋波折钢板及横隔板的疲劳寿命主要受弧形切口顶应力幅控制,施工时应加强切口打磨质量,防止疲劳开裂。另外,UHPC板厚增大、横隔板间距减小以及横隔板厚度加大时,各疲劳细节应力幅均有减小趋势,但加大纵肋高度或填充混凝土补强纵肋后,其各疲劳细节应力幅增减趋势并不一致。通过合理参数设计可使得各疲劳细节应力幅趋势均匀,获得优异的抗疲劳性能。  相似文献   

15.
为研究50 mm厚EA10环氧沥青混凝土铺装层温度对正交异性钢桥面板U肋与顶板构造疲劳致损效应的影响,开展带沥青混凝土铺装层的正交异性钢桥面板足尺节段模型拟静力循环加载试验。分析不同铺装层温度下正交异性钢桥面板顶板的横向应变、挠度以及U肋与顶板构造的局部热点应力响应,在此基础上,对不同铺装层温度下U肋与顶板外侧焊趾疲劳损伤进行研究。结果表明:常温(25℃)条件下,采用沥青混凝土铺装层可降低钢桥面板顶板35.2%的横向应力和10.3%的局部挠度,以及U肋与顶板双面焊构造外侧顶板焊趾区域的应力幅值和疲劳损伤;随着沥青混凝土铺装层温度升高,顶板横向应力、挠度及U肋与顶板双面焊构造外侧顶板焊趾区域的应力幅值、疲劳损伤显著增大,高温(60℃)条件下该区域疲劳损伤度增幅可达41.5%。  相似文献   

16.
为研究钢桥面板疲劳开裂局部区域引入钢或高性能材料加固构件的装配式加固方法,以钢桥面板纵肋与横隔板交叉构造细节为研究对象,采用足尺模型试验对钢桥面板纵肋与横隔板交叉构造细节疲劳性能劣化及其疲劳开裂的栓接角钢装配式快速加固相关关键问题进行了试验和理论研究;基于断裂力学探究了纵肋与横隔板交叉构造细节三维疲劳裂纹的扩展特性、疲劳寿命预测及装配式快速加固方法的加固效果。研究结果表明:纵肋与横隔板交叉构造细节的疲劳裂纹萌生于焊趾并沿纵肋腹板进行扩展,其对结构力学特性的影响范围和程度随着裂纹的扩展而逐步加剧;加固后相应开裂部位关键测点和裂尖各测点的应力应变降幅分别达57%和80%,装配式加固构件与既有结构协同受力性能良好,能够有效抑制局部疲劳裂纹扩展;数值断裂力学分析表明,加固后裂尖应力强度因子降幅达90%,可有效抑制疲劳裂纹的进一步扩展。  相似文献   

17.
国内一些公路钢桥使用7~8年后,正交异性钢桥面板出现不同程度的疲劳问题。针对这些正交异性钢桥面板疲劳现象,国内外已进行了不少研究。但目前这些研究主要以疲劳试验为主,缺乏理论分析,还没有确定疲劳应力强度因子和顶板厚度与疲劳构造细节的关系等。将断裂力学理论和精细化数据模拟分析相结合,确定正交异性钢桥面板顶板与U肋焊接处的应力强度因子,明确不同顶板厚度、不同位置处的疲劳寿命和桥面板厚度与疲劳构造细节之间的关系等。  相似文献   

18.
许航  鲍力  刘旭锴  谢增奎 《公路》2024,(1):124-133
采用有限元计算方法,对某大桥钢桥面铺装在采用钢-UHPC超轻型组合梁优化前后的钢箱梁节段正交异性钢桥面板的主要连接接头进行了分析,研究了在轮轴荷载作用下主要疲劳裂纹的控制应力的分布特征及应力影响面,建立了较全面的荷载作用与应力效应的对应关系,并由此推算出实桥在设计疲劳荷载作用下的应力历程及相应的应力谱。针对设计疲劳寿命周期内的正交异性钢桥面板的各构造细节,根据Miner疲劳损伤累积理论计算出相应的疲劳累积损伤,并对其疲劳寿命进行评估。采用普通钢桥面铺装时,靠近顶板与U肋、U肋与横隔板连接处的主要疲劳裂纹,其疲劳累积损伤度在设计使用寿命周期内均大于1,存在较高的疲劳开裂风险。经钢-UHPC超轻量组合桥面板设计优化后,顶板与U肋连接处抗疲劳性能改善效果显著,在大桥设计寿命周期内可满足抗疲劳设计的使用要求;但设计优化对横隔板-U肋-顶板连接处的抗疲劳性能影响有限,在设计使用寿命周期内,疲劳裂纹C.5、C.6、C.6.1、C.7仍存在较高的开裂风险,需引起重视。  相似文献   

19.
纵肋-面板(rib-to-deck,简称RD)双面焊是正交异性钢桥面板制造新技术。为研究该构造细节的轮载应力特征,在某大跨度钢箱梁斜拉桥上开展了横桥向3个典型轮载工况的控制加载试验,记录了卡车缓慢移动和跑车时毗邻的多个RD构造细节的应力时程,研究了RD构造细节轮载应力行为。通过建立正交异性钢桥面板模型,开展了RD双面焊构造细节的精细化有限元分析。现场试验表明:在横桥向3个典型轮载工况中,跨肋式加载是RD构造细节最不利加载工况,此时纵肋侧和面板侧均产生最大应力幅,且面板侧大于纵肋侧;同时,RD构造细节轮载应力的局部效应显著,横桥向当构造细节距离轮载中心大于1倍纵肋中心距后,其纵肋侧和面板侧的应力幅均很小,因此可忽略卡车左右轮和相邻车道卡车并行的应力叠加效应;在纵桥向,轮载对RD构造细节的加载效应也仅局限其所在前后横隔板之间的桥面;另外,横桥向轮胎覆盖的面板下方RD构造细节,其应力时程能分辨单轴,每个车轴产生一个应力峰;否则其应力时程只能识别轴组,一辆卡车通行产生的疲劳加载次数等于卡车轴组数。有限元分析不仅得到了与现场加载试验非常一致的结果,也表明RD构造细节外侧最大应力幅均大于内侧,因此轮载作用下内侧焊焊趾的疲劳抗力高于外侧焊。故对RD双面焊构造细节,基于现场试验获得的外侧焊构造细节应力响应,能给出RD构造细节疲劳性能的合理评价。  相似文献   

20.
为了改善常规正交异性钢桥面板的疲劳开裂问题,提出新型半开口纵肋正交异性钢桥面板结构,该结构通过在纵肋底部开口实现顶板与纵肋双面焊接,提高焊缝质量,降低纵肋与横隔板的刚度差。为验证该新型钢桥面板的疲劳性能,设计制作钢桥面板节段足尺模型进行疲劳试验,采用应力应变法、数字图像法、声发射法等技术监测应力和裂纹发展。结果表明:在1 000万次循环加载过程中,新型钢桥面板各构造细节处均未出现疲劳裂纹;与常规正交异性钢桥面板相比,新型钢桥面板纵肋与横隔板连接处的应力幅大幅降低;新型钢桥面板结构显著改善了正交异性钢桥面板的抗疲劳性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号